x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(6x\right)^{2}=\left(\sqrt{24+12x}\right)^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
6^{2}x^{2}=\left(\sqrt{24+12x}\right)^{2}
ବିସ୍ତାର କରନ୍ତୁ \left(6x\right)^{2}.
36x^{2}=\left(\sqrt{24+12x}\right)^{2}
2 ର 6 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 36 ପ୍ରାପ୍ତ କରନ୍ତୁ.
36x^{2}=24+12x
2 ର \sqrt{24+12x} ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 24+12x ପ୍ରାପ୍ତ କରନ୍ତୁ.
36x^{2}-24=12x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
36x^{2}-24-12x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12x ବିୟୋଗ କରନ୍ତୁ.
3x^{2}-2-x=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
3x^{2}-x-2=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-1 ab=3\left(-2\right)=-6
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 3x^{2}+ax+bx-2 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-6 2,-3
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -6 ପ୍ରଦାନ କରିଥାଏ.
1-6=-5 2-3=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -1 ପ୍ରଦାନ କରିଥାଏ.
\left(3x^{2}-3x\right)+\left(2x-2\right)
\left(3x^{2}-3x\right)+\left(2x-2\right) ଭାବରେ 3x^{2}-x-2 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(x-1\right)+2\left(x-1\right)
ପ୍ରଥମଟିରେ 3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-1\right)\left(3x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=1 x=-\frac{2}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-1=0 ଏବଂ 3x+2=0 ସମାଧାନ କରନ୍ତୁ.
6\times 1=\sqrt{24+12\times 1}
ସମୀକରଣ 6x=\sqrt{24+12x} ରେ x ସ୍ଥାନରେ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
6=6
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ x=1 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
6\left(-\frac{2}{3}\right)=\sqrt{24+12\left(-\frac{2}{3}\right)}
ସମୀକରଣ 6x=\sqrt{24+12x} ରେ x ସ୍ଥାନରେ -\frac{2}{3} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-4=4
ସରଳୀକୃତ କରନ୍ତୁ. x=-\frac{2}{3} ମୂଲ୍ୟ ସମୀକରଣକୁ ସନ୍ତୁଷ୍ଟ କରେ ନାହିଁ କାରଣ ବାମ ଏବଂ ଡାହାଣ ପାର୍ଶ୍ୱରେ ବିପରୀତ ଚିହ୍ନ ଥାଏ.
x=1
ସମୀକରଣ 6x=\sqrt{12x+24} ଏକ ସ୍ଵତନ୍ତ୍ର ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}