ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-11 ab=6\times 4=24
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 6r^{2}+ar+br+4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-24 -2,-12 -3,-8 -4,-6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 24 ପ୍ରଦାନ କରିଥାଏ.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-8 b=-3
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -11 ପ୍ରଦାନ କରିଥାଏ.
\left(6r^{2}-8r\right)+\left(-3r+4\right)
\left(6r^{2}-8r\right)+\left(-3r+4\right) ଭାବରେ 6r^{2}-11r+4 ପୁନଃ ଲେଖନ୍ତୁ.
2r\left(3r-4\right)-\left(3r-4\right)
ପ୍ରଥମଟିରେ 2r ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3r-4\right)\left(2r-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3r-4 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
6r^{2}-11r+4=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
r=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 6\times 4}}{2\times 6}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
r=\frac{-\left(-11\right)±\sqrt{121-4\times 6\times 4}}{2\times 6}
ବର୍ଗ -11.
r=\frac{-\left(-11\right)±\sqrt{121-24\times 4}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
r=\frac{-\left(-11\right)±\sqrt{121-96}}{2\times 6}
-24 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
r=\frac{-\left(-11\right)±\sqrt{25}}{2\times 6}
121 କୁ -96 ସହ ଯୋଡନ୍ତୁ.
r=\frac{-\left(-11\right)±5}{2\times 6}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
r=\frac{11±5}{2\times 6}
-11 ର ବିପରୀତ ହେଉଛି 11.
r=\frac{11±5}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
r=\frac{16}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ r=\frac{11±5}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 11 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
r=\frac{4}{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{16}{12} ହ୍ରାସ କରନ୍ତୁ.
r=\frac{6}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ r=\frac{11±5}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 11 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
r=\frac{1}{2}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{6}{12} ହ୍ରାସ କରନ୍ତୁ.
6r^{2}-11r+4=6\left(r-\frac{4}{3}\right)\left(r-\frac{1}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{4}{3} ଏବଂ x_{2} ପାଇଁ \frac{1}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
6r^{2}-11r+4=6\times \frac{3r-4}{3}\left(r-\frac{1}{2}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା r ରୁ \frac{4}{3} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
6r^{2}-11r+4=6\times \frac{3r-4}{3}\times \frac{2r-1}{2}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା r ରୁ \frac{1}{2} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
6r^{2}-11r+4=6\times \frac{\left(3r-4\right)\left(2r-1\right)}{3\times 2}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{3r-4}{3} କୁ \frac{2r-1}{2} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
6r^{2}-11r+4=6\times \frac{\left(3r-4\right)\left(2r-1\right)}{6}
3 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
6r^{2}-11r+4=\left(3r-4\right)\left(2r-1\right)
6 ଏବଂ 6 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 6 ବାତିଲ୍‌ କରନ୍ତୁ.