ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
p ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

6p^{2}-5-13p=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 13p ବିୟୋଗ କରନ୍ତୁ.
6p^{2}-13p-5=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-13 ab=6\left(-5\right)=-30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 6p^{2}+ap+bp-5 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-30 2,-15 3,-10 5,-6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -30 ପ୍ରଦାନ କରିଥାଏ.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-15 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -13 ପ୍ରଦାନ କରିଥାଏ.
\left(6p^{2}-15p\right)+\left(2p-5\right)
\left(6p^{2}-15p\right)+\left(2p-5\right) ଭାବରେ 6p^{2}-13p-5 ପୁନଃ ଲେଖନ୍ତୁ.
3p\left(2p-5\right)+2p-5
6p^{2}-15pରେ 3p ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2p-5\right)\left(3p+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2p-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
p=\frac{5}{2} p=-\frac{1}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2p-5=0 ଏବଂ 3p+1=0 ସମାଧାନ କରନ୍ତୁ.
6p^{2}-5-13p=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 13p ବିୟୋଗ କରନ୍ତୁ.
6p^{2}-13p-5=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
p=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\left(-5\right)}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ -13, ଏବଂ c ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
p=\frac{-\left(-13\right)±\sqrt{169-4\times 6\left(-5\right)}}{2\times 6}
ବର୍ଗ -13.
p=\frac{-\left(-13\right)±\sqrt{169-24\left(-5\right)}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-\left(-13\right)±\sqrt{169+120}}{2\times 6}
-24 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-\left(-13\right)±\sqrt{289}}{2\times 6}
169 କୁ 120 ସହ ଯୋଡନ୍ତୁ.
p=\frac{-\left(-13\right)±17}{2\times 6}
289 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
p=\frac{13±17}{2\times 6}
-13 ର ବିପରୀତ ହେଉଛି 13.
p=\frac{13±17}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{30}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{13±17}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 13 କୁ 17 ସହ ଯୋଡନ୍ତୁ.
p=\frac{5}{2}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{30}{12} ହ୍ରାସ କରନ୍ତୁ.
p=-\frac{4}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{13±17}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 13 ରୁ 17 ବିୟୋଗ କରନ୍ତୁ.
p=-\frac{1}{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-4}{12} ହ୍ରାସ କରନ୍ତୁ.
p=\frac{5}{2} p=-\frac{1}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6p^{2}-5-13p=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 13p ବିୟୋଗ କରନ୍ତୁ.
6p^{2}-13p=5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{6p^{2}-13p}{6}=\frac{5}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p^{2}-\frac{13}{6}p=\frac{5}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
p^{2}-\frac{13}{6}p+\left(-\frac{13}{12}\right)^{2}=\frac{5}{6}+\left(-\frac{13}{12}\right)^{2}
-\frac{13}{12} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{13}{6} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{13}{12} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
p^{2}-\frac{13}{6}p+\frac{169}{144}=\frac{5}{6}+\frac{169}{144}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{13}{12} ବର୍ଗ ବାହାର କରନ୍ତୁ.
p^{2}-\frac{13}{6}p+\frac{169}{144}=\frac{289}{144}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{169}{144} ସହିତ \frac{5}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(p-\frac{13}{12}\right)^{2}=\frac{289}{144}
ଗୁଣନୀୟକ p^{2}-\frac{13}{6}p+\frac{169}{144}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(p-\frac{13}{12}\right)^{2}}=\sqrt{\frac{289}{144}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
p-\frac{13}{12}=\frac{17}{12} p-\frac{13}{12}=-\frac{17}{12}
ସରଳୀକୃତ କରିବା.
p=\frac{5}{2} p=-\frac{1}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{12} ଯୋଡନ୍ତୁ.