ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}-2x-56=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=-2 ab=3\left(-56\right)=-168
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 3x^{2}+ax+bx-56 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-168 2,-84 3,-56 4,-42 6,-28 7,-24 8,-21 12,-14
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -168 ପ୍ରଦାନ କରିଥାଏ.
1-168=-167 2-84=-82 3-56=-53 4-42=-38 6-28=-22 7-24=-17 8-21=-13 12-14=-2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-14 b=12
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -2 ପ୍ରଦାନ କରିଥାଏ.
\left(3x^{2}-14x\right)+\left(12x-56\right)
\left(3x^{2}-14x\right)+\left(12x-56\right) ଭାବରେ 3x^{2}-2x-56 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(3x-14\right)+4\left(3x-14\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3x-14\right)\left(x+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3x-14 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{14}{3} x=-4
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 3x-14=0 ଏବଂ x+4=0 ସମାଧାନ କରନ୍ତୁ.
6x^{2}-4x-112=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 6\left(-112\right)}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -112 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 6\left(-112\right)}}{2\times 6}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-24\left(-112\right)}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16+2688}}{2\times 6}
-24 କୁ -112 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{2704}}{2\times 6}
16 କୁ 2688 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±52}{2\times 6}
2704 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±52}{2\times 6}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±52}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{56}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±52}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 52 ସହ ଯୋଡନ୍ତୁ.
x=\frac{14}{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{56}{12} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{48}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±52}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 52 ବିୟୋଗ କରନ୍ତୁ.
x=-4
-48 କୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{14}{3} x=-4
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6x^{2}-4x-112=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
6x^{2}-4x-112-\left(-112\right)=-\left(-112\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 112 ଯୋଡନ୍ତୁ.
6x^{2}-4x=-\left(-112\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -112 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
6x^{2}-4x=112
0 ରୁ -112 ବିୟୋଗ କରନ୍ତୁ.
\frac{6x^{2}-4x}{6}=\frac{112}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{4}{6}\right)x=\frac{112}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{2}{3}x=\frac{112}{6}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-4}{6} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{2}{3}x=\frac{56}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{112}{6} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{56}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{2}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{56}{3}+\frac{1}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{169}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{9} ସହିତ \frac{56}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{3}\right)^{2}=\frac{169}{9}
ଗୁଣନୀୟକ x^{2}-\frac{2}{3}x+\frac{1}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{169}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{3}=\frac{13}{3} x-\frac{1}{3}=-\frac{13}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{14}{3} x=-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{3} ଯୋଡନ୍ତୁ.