x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-\frac{9\sqrt{10}}{10}+1\approx -1.846049894
x=\frac{9\sqrt{10}}{10}+1\approx 3.846049894
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{50\left(-x+1\right)^{2}}{50}=\frac{405}{50}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\left(-x+1\right)^{2}=\frac{405}{50}
50 ଦ୍ୱାରା ବିଭାଜନ କରିବା 50 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
\left(-x+1\right)^{2}=\frac{81}{10}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{405}{50} ହ୍ରାସ କରନ୍ତୁ.
-x+1=\frac{9\sqrt{10}}{10} -x+1=-\frac{9\sqrt{10}}{10}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
-x+1-1=\frac{9\sqrt{10}}{10}-1 -x+1-1=-\frac{9\sqrt{10}}{10}-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
-x=\frac{9\sqrt{10}}{10}-1 -x=-\frac{9\sqrt{10}}{10}-1
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 1 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
-x=\frac{9\sqrt{10}}{10}-1
\frac{9\sqrt{10}}{10} ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
-x=-\frac{9\sqrt{10}}{10}-1
-\frac{9\sqrt{10}}{10} ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
\frac{-x}{-1}=\frac{\frac{9\sqrt{10}}{10}-1}{-1} \frac{-x}{-1}=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\frac{9\sqrt{10}}{10}-1}{-1} x=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x=-\frac{9\sqrt{10}}{10}+1
\frac{9\sqrt{10}}{10}-1 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{9\sqrt{10}}{10}+1
-\frac{9\sqrt{10}}{10}-1 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{9\sqrt{10}}{10}+1 x=\frac{9\sqrt{10}}{10}+1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}