ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

15x-20x^{2}=15x-4x
5x କୁ 3-4x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
15x-20x^{2}=11x
11x ପାଇବାକୁ 15x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
15x-20x^{2}-11x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 11x ବିୟୋଗ କରନ୍ତୁ.
4x-20x^{2}=0
4x ପାଇବାକୁ 15x ଏବଂ -11x ସମ୍ମେଳନ କରନ୍ତୁ.
x\left(4-20x\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=\frac{1}{5}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ 4-20x=0 ସମାଧାନ କରନ୍ତୁ.
15x-20x^{2}=15x-4x
5x କୁ 3-4x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
15x-20x^{2}=11x
11x ପାଇବାକୁ 15x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
15x-20x^{2}-11x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 11x ବିୟୋଗ କରନ୍ତୁ.
4x-20x^{2}=0
4x ପାଇବାକୁ 15x ଏବଂ -11x ସମ୍ମେଳନ କରନ୍ତୁ.
-20x^{2}+4x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-20\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -20, b ପାଇଁ 4, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-4±4}{2\left(-20\right)}
4^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-4±4}{-40}
2 କୁ -20 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0}{-40}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±4}{-40} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -4 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=0
0 କୁ -40 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{8}{-40}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±4}{-40} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -4 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{5}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-8}{-40} ହ୍ରାସ କରନ୍ତୁ.
x=0 x=\frac{1}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
15x-20x^{2}=15x-4x
5x କୁ 3-4x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
15x-20x^{2}=11x
11x ପାଇବାକୁ 15x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
15x-20x^{2}-11x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 11x ବିୟୋଗ କରନ୍ତୁ.
4x-20x^{2}=0
4x ପାଇବାକୁ 15x ଏବଂ -11x ସମ୍ମେଳନ କରନ୍ତୁ.
-20x^{2}+4x=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-20x^{2}+4x}{-20}=\frac{0}{-20}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -20 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{4}{-20}x=\frac{0}{-20}
-20 ଦ୍ୱାରା ବିଭାଜନ କରିବା -20 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{1}{5}x=\frac{0}{-20}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{-20} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{1}{5}x=0
0 କୁ -20 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\left(-\frac{1}{10}\right)^{2}
-\frac{1}{10} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{10} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{1}{100}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{10} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x-\frac{1}{10}\right)^{2}=\frac{1}{100}
ଗୁଣନୀୟକ x^{2}-\frac{1}{5}x+\frac{1}{100}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{10}=\frac{1}{10} x-\frac{1}{10}=-\frac{1}{10}
ସରଳୀକୃତ କରିବା.
x=\frac{1}{5} x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{10} ଯୋଡନ୍ତୁ.