x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-1
x=\frac{2}{5}=0.4
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5x^{2}-7x-6+10x=-4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
5x^{2}+3x-6=-4
3x ପାଇବାକୁ -7x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
5x^{2}+3x-6+4=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4 ଯୋଡନ୍ତୁ.
5x^{2}+3x-2=0
-2 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 4 ଯୋଗ କରନ୍ତୁ.
a+b=3 ab=5\left(-2\right)=-10
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 5x^{2}+ax+bx-2 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,10 -2,5
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -10 ପ୍ରଦାନ କରିଥାଏ.
-1+10=9 -2+5=3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-2 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 3 ପ୍ରଦାନ କରିଥାଏ.
\left(5x^{2}-2x\right)+\left(5x-2\right)
\left(5x^{2}-2x\right)+\left(5x-2\right) ଭାବରେ 5x^{2}+3x-2 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(5x-2\right)+5x-2
5x^{2}-2xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5x-2\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{2}{5} x=-1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 5x-2=0 ଏବଂ x+1=0 ସମାଧାନ କରନ୍ତୁ.
5x^{2}-7x-6+10x=-4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
5x^{2}+3x-6=-4
3x ପାଇବାକୁ -7x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
5x^{2}+3x-6+4=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4 ଯୋଡନ୍ତୁ.
5x^{2}+3x-2=0
-2 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 4 ଯୋଗ କରନ୍ତୁ.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-2\right)}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ 3, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
ବର୍ଗ 3.
x=\frac{-3±\sqrt{9-20\left(-2\right)}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9+40}}{2\times 5}
-20 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{49}}{2\times 5}
9 କୁ 40 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-3±7}{2\times 5}
49 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-3±7}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±7}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -3 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
x=\frac{2}{5}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{10} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{10}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±7}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -3 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-10 କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2}{5} x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}-7x-6+10x=-4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
5x^{2}+3x-6=-4
3x ପାଇବାକୁ -7x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
5x^{2}+3x=-4+6
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ.
5x^{2}+3x=2
2 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 6 ଯୋଗ କରନ୍ତୁ.
\frac{5x^{2}+3x}{5}=\frac{2}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{3}{5}x=\frac{2}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{2}{5}+\left(\frac{3}{10}\right)^{2}
\frac{3}{10} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{3}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{10} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{2}{5}+\frac{9}{100}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{10} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{49}{100}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{100} ସହିତ \frac{2}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{3}{10}\right)^{2}=\frac{49}{100}
ଗୁଣନୀୟକ x^{2}+\frac{3}{5}x+\frac{9}{100}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{10}=\frac{7}{10} x+\frac{3}{10}=-\frac{7}{10}
ସରଳୀକୃତ କରିବା.
x=\frac{2}{5} x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{10} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}