ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

5x^{2}-6x-4-4=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
5x^{2}-6x-8=0
-8 ପ୍ରାପ୍ତ କରିବାକୁ -4 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
a+b=-6 ab=5\left(-8\right)=-40
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 5x^{2}+ax+bx-8 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-40 2,-20 4,-10 5,-8
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -40 ପ୍ରଦାନ କରିଥାଏ.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-10 b=4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -6 ପ୍ରଦାନ କରିଥାଏ.
\left(5x^{2}-10x\right)+\left(4x-8\right)
\left(5x^{2}-10x\right)+\left(4x-8\right) ଭାବରେ 5x^{2}-6x-8 ପୁନଃ ଲେଖନ୍ତୁ.
5x\left(x-2\right)+4\left(x-2\right)
ପ୍ରଥମଟିରେ 5x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-2\right)\left(5x+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=2 x=-\frac{4}{5}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-2=0 ଏବଂ 5x+4=0 ସମାଧାନ କରନ୍ତୁ.
5x^{2}-6x-4=4
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
5x^{2}-6x-4-4=4-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
5x^{2}-6x-4-4=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 4 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
5x^{2}-6x-8=0
-4 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5\left(-8\right)}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ -6, ଏବଂ c ପାଇଁ -8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5\left(-8\right)}}{2\times 5}
ବର୍ଗ -6.
x=\frac{-\left(-6\right)±\sqrt{36-20\left(-8\right)}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2\times 5}
-20 କୁ -8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{196}}{2\times 5}
36 କୁ 160 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-6\right)±14}{2\times 5}
196 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6±14}{2\times 5}
-6 ର ବିପରୀତ ହେଉଛି 6.
x=\frac{6±14}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{20}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±14}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 6 କୁ 14 ସହ ଯୋଡନ୍ତୁ.
x=2
20 କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{8}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±14}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 6 ରୁ 14 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{4}{5}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-8}{10} ହ୍ରାସ କରନ୍ତୁ.
x=2 x=-\frac{4}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}-6x-4=4
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
5x^{2}-6x-4-\left(-4\right)=4-\left(-4\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ଯୋଡନ୍ତୁ.
5x^{2}-6x=4-\left(-4\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -4 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
5x^{2}-6x=8
4 ରୁ -4 ବିୟୋଗ କରନ୍ତୁ.
\frac{5x^{2}-6x}{5}=\frac{8}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{6}{5}x=\frac{8}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\frac{8}{5}+\left(-\frac{3}{5}\right)^{2}
-\frac{3}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{6}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{8}{5}+\frac{9}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{49}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{25} ସହିତ \frac{8}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{3}{5}\right)^{2}=\frac{49}{25}
ଗୁଣନୀୟକ x^{2}-\frac{6}{5}x+\frac{9}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{49}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{3}{5}=\frac{7}{5} x-\frac{3}{5}=-\frac{7}{5}
ସରଳୀକୃତ କରିବା.
x=2 x=-\frac{4}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{5} ଯୋଡନ୍ତୁ.