ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

5x^{2}-4x=-3
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
5x^{2}-4x-\left(-3\right)=-3-\left(-3\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
5x^{2}-4x-\left(-3\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
5x^{2}-4x+3=0
0 ରୁ -3 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\times 3}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ -4, ଏବଂ c ପାଇଁ 3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 5\times 3}}{2\times 5}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-20\times 3}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-60}}{2\times 5}
-20 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{-44}}{2\times 5}
16 କୁ -60 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±2\sqrt{11}i}{2\times 5}
-44 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±2\sqrt{11}i}{2\times 5}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±2\sqrt{11}i}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4+2\sqrt{11}i}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{11}i}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 2i\sqrt{11} ସହ ଯୋଡନ୍ତୁ.
x=\frac{2+\sqrt{11}i}{5}
4+2i\sqrt{11} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{11}i+4}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{11}i}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 2i\sqrt{11} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{11}i+2}{5}
4-2i\sqrt{11} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2+\sqrt{11}i}{5} x=\frac{-\sqrt{11}i+2}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}-4x=-3
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{5x^{2}-4x}{5}=-\frac{3}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{4}{5}x=-\frac{3}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=-\frac{3}{5}+\left(-\frac{2}{5}\right)^{2}
-\frac{2}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{4}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{2}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{4}{5}x+\frac{4}{25}=-\frac{3}{5}+\frac{4}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{2}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{4}{5}x+\frac{4}{25}=-\frac{11}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{4}{25} ସହିତ -\frac{3}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{2}{5}\right)^{2}=-\frac{11}{25}
ଗୁଣନୀୟକ x^{2}-\frac{4}{5}x+\frac{4}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{-\frac{11}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{2}{5}=\frac{\sqrt{11}i}{5} x-\frac{2}{5}=-\frac{\sqrt{11}i}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{2+\sqrt{11}i}{5} x=\frac{-\sqrt{11}i+2}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{2}{5} ଯୋଡନ୍ତୁ.