x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{\sqrt{35}}{5}+1\approx 2.183215957
x=-\frac{\sqrt{35}}{5}+1\approx -0.183215957
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5x^{2}-10x-2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ -10, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-2\right)}}{2\times 5}
ବର୍ଗ -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-2\right)}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{100+40}}{2\times 5}
-20 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{140}}{2\times 5}
100 କୁ 40 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-10\right)±2\sqrt{35}}{2\times 5}
140 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{10±2\sqrt{35}}{2\times 5}
-10 ର ବିପରୀତ ହେଉଛି 10.
x=\frac{10±2\sqrt{35}}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{35}+10}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±2\sqrt{35}}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 10 କୁ 2\sqrt{35} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{35}}{5}+1
10+2\sqrt{35} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{10-2\sqrt{35}}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±2\sqrt{35}}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 10 ରୁ 2\sqrt{35} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{35}}{5}+1
10-2\sqrt{35} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{35}}{5}+1 x=-\frac{\sqrt{35}}{5}+1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}-10x-2=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
5x^{2}-10x-2-\left(-2\right)=-\left(-2\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
5x^{2}-10x=-\left(-2\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -2 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
5x^{2}-10x=2
0 ରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
\frac{5x^{2}-10x}{5}=\frac{2}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{2}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-2x=\frac{2}{5}
-10 କୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-2x+1=\frac{2}{5}+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-2x+1=\frac{7}{5}
\frac{2}{5} କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x-1\right)^{2}=\frac{7}{5}
ଗୁଣନୀୟକ x^{2}-2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{7}{5}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-1=\frac{\sqrt{35}}{5} x-1=-\frac{\sqrt{35}}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{35}}{5}+1 x=-\frac{\sqrt{35}}{5}+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}