ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

5x^{2}+6x+10=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-6±\sqrt{6^{2}-4\times 5\times 10}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ 6, ଏବଂ c ପାଇଁ 10 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36-4\times 5\times 10}}{2\times 5}
ବର୍ଗ 6.
x=\frac{-6±\sqrt{36-20\times 10}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36-200}}{2\times 5}
-20 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{-164}}{2\times 5}
36 କୁ -200 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-6±2\sqrt{41}i}{2\times 5}
-164 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-6±2\sqrt{41}i}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6+2\sqrt{41}i}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±2\sqrt{41}i}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -6 କୁ 2i\sqrt{41} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-3+\sqrt{41}i}{5}
-6+2i\sqrt{41} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{41}i-6}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±2\sqrt{41}i}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -6 ରୁ 2i\sqrt{41} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{41}i-3}{5}
-6-2i\sqrt{41} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-3+\sqrt{41}i}{5} x=\frac{-\sqrt{41}i-3}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}+6x+10=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
5x^{2}+6x+10-10=-10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
5x^{2}+6x=-10
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 10 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{5x^{2}+6x}{5}=-\frac{10}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{6}{5}x=-\frac{10}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{6}{5}x=-2
-10 କୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-2+\left(\frac{3}{5}\right)^{2}
\frac{3}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{6}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-2+\frac{9}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{41}{25}
-2 କୁ \frac{9}{25} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{3}{5}\right)^{2}=-\frac{41}{25}
ଗୁଣନୀୟକ x^{2}+\frac{6}{5}x+\frac{9}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{-\frac{41}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{5}=\frac{\sqrt{41}i}{5} x+\frac{3}{5}=-\frac{\sqrt{41}i}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{-3+\sqrt{41}i}{5} x=\frac{-\sqrt{41}i-3}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{5} ବିୟୋଗ କରନ୍ତୁ.