ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

5x^{2}+21x+10x=-6
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
5x^{2}+31x=-6
31x ପାଇବାକୁ 21x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
5x^{2}+31x+6=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ.
a+b=31 ab=5\times 6=30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 5x^{2}+ax+bx+6 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,30 2,15 3,10 5,6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 30 ପ୍ରଦାନ କରିଥାଏ.
1+30=31 2+15=17 3+10=13 5+6=11
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=1 b=30
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 31 ପ୍ରଦାନ କରିଥାଏ.
\left(5x^{2}+x\right)+\left(30x+6\right)
\left(5x^{2}+x\right)+\left(30x+6\right) ଭାବରେ 5x^{2}+31x+6 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(5x+1\right)+6\left(5x+1\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 6 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5x+1\right)\left(x+6\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5x+1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-\frac{1}{5} x=-6
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 5x+1=0 ଏବଂ x+6=0 ସମାଧାନ କରନ୍ତୁ.
5x^{2}+21x+10x=-6
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
5x^{2}+31x=-6
31x ପାଇବାକୁ 21x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
5x^{2}+31x+6=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ.
x=\frac{-31±\sqrt{31^{2}-4\times 5\times 6}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ 31, ଏବଂ c ପାଇଁ 6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-31±\sqrt{961-4\times 5\times 6}}{2\times 5}
ବର୍ଗ 31.
x=\frac{-31±\sqrt{961-20\times 6}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-31±\sqrt{961-120}}{2\times 5}
-20 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-31±\sqrt{841}}{2\times 5}
961 କୁ -120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-31±29}{2\times 5}
841 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-31±29}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{2}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-31±29}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -31 କୁ 29 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{1}{5}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{10} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{60}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-31±29}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -31 ରୁ 29 ବିୟୋଗ କରନ୍ତୁ.
x=-6
-60 କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{1}{5} x=-6
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}+21x+10x=-6
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
5x^{2}+31x=-6
31x ପାଇବାକୁ 21x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{5x^{2}+31x}{5}=-\frac{6}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{31}{5}x=-\frac{6}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{31}{5}x+\left(\frac{31}{10}\right)^{2}=-\frac{6}{5}+\left(\frac{31}{10}\right)^{2}
\frac{31}{10} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{31}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{31}{10} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{31}{5}x+\frac{961}{100}=-\frac{6}{5}+\frac{961}{100}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{31}{10} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{31}{5}x+\frac{961}{100}=\frac{841}{100}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{961}{100} ସହିତ -\frac{6}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{31}{10}\right)^{2}=\frac{841}{100}
ଗୁଣନୀୟକ x^{2}+\frac{31}{5}x+\frac{961}{100}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{31}{10}\right)^{2}}=\sqrt{\frac{841}{100}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{31}{10}=\frac{29}{10} x+\frac{31}{10}=-\frac{29}{10}
ସରଳୀକୃତ କରିବା.
x=-\frac{1}{5} x=-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{31}{10} ବିୟୋଗ କରନ୍ତୁ.