ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

5x^{2}+2x+8=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-2±\sqrt{2^{2}-4\times 5\times 8}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ 2, ଏବଂ c ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\times 5\times 8}}{2\times 5}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4-20\times 8}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-160}}{2\times 5}
-20 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{-156}}{2\times 5}
4 କୁ -160 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±2\sqrt{39}i}{2\times 5}
-156 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-2±2\sqrt{39}i}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2+2\sqrt{39}i}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{39}i}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2i\sqrt{39} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-1+\sqrt{39}i}{5}
-2+2i\sqrt{39} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{39}i-2}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{39}i}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2i\sqrt{39} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{39}i-1}{5}
-2-2i\sqrt{39} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-1+\sqrt{39}i}{5} x=\frac{-\sqrt{39}i-1}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}+2x+8=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
5x^{2}+2x+8-8=-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
5x^{2}+2x=-8
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 8 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{5x^{2}+2x}{5}=-\frac{8}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{2}{5}x=-\frac{8}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=-\frac{8}{5}+\left(\frac{1}{5}\right)^{2}
\frac{1}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{2}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{2}{5}x+\frac{1}{25}=-\frac{8}{5}+\frac{1}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{2}{5}x+\frac{1}{25}=-\frac{39}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{25} ସହିତ -\frac{8}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{5}\right)^{2}=-\frac{39}{25}
ଗୁଣନୀୟକ x^{2}+\frac{2}{5}x+\frac{1}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{-\frac{39}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{5}=\frac{\sqrt{39}i}{5} x+\frac{1}{5}=-\frac{\sqrt{39}i}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{-1+\sqrt{39}i}{5} x=\frac{-\sqrt{39}i-1}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{5} ବିୟୋଗ କରନ୍ତୁ.