ଗୁଣକ
5\left(x^{2}+x+1\right)
ମୂଲ୍ୟାୟନ କରିବା
5\left(x^{2}+x+1\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5\left(x+x^{2}+1\right)
5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ. ପଲିନୋମିଆଲ x+x^{2}+1 ଫ୍ୟାକ୍ଟର ହୋଇନାହିଁ ଯେହେତୁ ଏଥିରେ କୌଣସି ରେସନାଲ ରୁଟ୍ ନାହିଁ.
5x^{2}+5x+5=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-5±\sqrt{5^{2}-4\times 5\times 5}}{2\times 5}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-5±\sqrt{25-4\times 5\times 5}}{2\times 5}
ବର୍ଗ 5.
x=\frac{-5±\sqrt{25-20\times 5}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25-100}}{2\times 5}
-20 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{-75}}{2\times 5}
25 କୁ -100 ସହ ଯୋଡନ୍ତୁ.
5x^{2}+5x+5
ଯଦିଓ ଏକ ବିଯୁକ୍ତାତ୍ମକ ସଂଖ୍ୟାର ଚତୁର୍ଭୁଜ ମୂଳ ପ୍ରକୃତ କ୍ଷେତରେ ନ୍ୟସ୍ତ ହୋଇନାହିଁ, କୌଣସି ସମାଧାନ ନାହିଁ. କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲର ଫ୍ୟାକ୍ଟର ନିର୍ଣ୍ଣୟ କରାଯାଇପାରିବ ନାହିଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}