ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{5\times 2x}{x+3}
5\times \frac{2x}{x+3} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{10x}{x+3}
10 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\times 2x}{x+3})
5\times \frac{2x}{x+3} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x}{x+3})
10 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(10x^{1})-10x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍‌ଯୋଗ୍ୟ ଫଙ୍କସନ୍‌ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍‌ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍‌ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍‌ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(x^{1}+3\right)\times 10x^{1-1}-10x^{1}x^{1-1}}{\left(x^{1}+3\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
\frac{\left(x^{1}+3\right)\times 10x^{0}-10x^{1}x^{0}}{\left(x^{1}+3\right)^{2}}
ପାଟୀଗଣିତ କରନ୍ତୁ.
\frac{x^{1}\times 10x^{0}+3\times 10x^{0}-10x^{1}x^{0}}{\left(x^{1}+3\right)^{2}}
ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରିବା ବିସ୍ତାର କରନ୍ତୁ.
\frac{10x^{1}+3\times 10x^{0}-10x^{1}}{\left(x^{1}+3\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍‌ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{10x^{1}+30x^{0}-10x^{1}}{\left(x^{1}+3\right)^{2}}
ପାଟୀଗଣିତ କରନ୍ତୁ.
\frac{\left(10-10\right)x^{1}+30x^{0}}{\left(x^{1}+3\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{30x^{0}}{\left(x^{1}+3\right)^{2}}
10 ରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
\frac{30x^{0}}{\left(x+3\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{30\times 1}{\left(x+3\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
\frac{30}{\left(x+3\right)^{2}}
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.