ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-42 ab=49\times 9=441
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 49x^{2}+ax+bx+9 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-441 -3,-147 -7,-63 -9,-49 -21,-21
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 441 ପ୍ରଦାନ କରିଥାଏ.
-1-441=-442 -3-147=-150 -7-63=-70 -9-49=-58 -21-21=-42
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-21 b=-21
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -42 ପ୍ରଦାନ କରିଥାଏ.
\left(49x^{2}-21x\right)+\left(-21x+9\right)
\left(49x^{2}-21x\right)+\left(-21x+9\right) ଭାବରେ 49x^{2}-42x+9 ପୁନଃ ଲେଖନ୍ତୁ.
7x\left(7x-3\right)-3\left(7x-3\right)
ପ୍ରଥମଟିରେ 7x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(7x-3\right)\left(7x-3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 7x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(7x-3\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
factor(49x^{2}-42x+9)
ଏହି ଟ୍ରାଇନମିଆଲ୍‌ର ଏକ ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ରୂପ ରହିଛି, ସମ୍ଭବତଃ ଏକ ସାଧାରଣ ଗୁଣନୀୟକ ଦ୍ୱାରା ଗୁଣିତ ହୋଇଥାଏ. ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକର ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କରିବା ଦ୍ୱାରା ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗଗୁଡିକୁ ଗୁଣନୀୟକଯୁକ୍ତ କରାଯାଇପାରିବ.
gcf(49,-42,9)=1
ଗୁଣାଙ୍କଗୁଡିକର ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନୀୟକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\sqrt{49x^{2}}=7x
ଅଗ୍ରଣୀ ପଦ, 49x^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\sqrt{9}=3
ଅନୁଗାମୀ ପଦ, 9 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\left(7x-3\right)^{2}
ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗ ହେଉଛି ବାଇନମିଆଲ୍‌ର ବର୍ଗ ଯାହା ହେଉଛି ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକ ବର୍ଗମୂଳର ପାର୍ଥକ୍ୟ କିମ୍ବା ସମଷ୍ଟି, ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ମଧ୍ୟମ ପଦର ଚିହ୍ନ ଦ୍ୱାରା ନିର୍ଦ୍ଧାରିତ ଚିହ୍ନ ସହିତ.
49x^{2}-42x+9=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 49\times 9}}{2\times 49}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 49\times 9}}{2\times 49}
ବର୍ଗ -42.
x=\frac{-\left(-42\right)±\sqrt{1764-196\times 9}}{2\times 49}
-4 କୁ 49 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-42\right)±\sqrt{1764-1764}}{2\times 49}
-196 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-42\right)±\sqrt{0}}{2\times 49}
1764 କୁ -1764 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-42\right)±0}{2\times 49}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{42±0}{2\times 49}
-42 ର ବିପରୀତ ହେଉଛି 42.
x=\frac{42±0}{98}
2 କୁ 49 ଥର ଗୁଣନ କରନ୍ତୁ.
49x^{2}-42x+9=49\left(x-\frac{3}{7}\right)\left(x-\frac{3}{7}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{3}{7} ଏବଂ x_{2} ପାଇଁ \frac{3}{7} ପ୍ରତିବଦଳ କରନ୍ତୁ.
49x^{2}-42x+9=49\times \frac{7x-3}{7}\left(x-\frac{3}{7}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{3}{7} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
49x^{2}-42x+9=49\times \frac{7x-3}{7}\times \frac{7x-3}{7}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{3}{7} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
49x^{2}-42x+9=49\times \frac{\left(7x-3\right)\left(7x-3\right)}{7\times 7}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{7x-3}{7} କୁ \frac{7x-3}{7} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
49x^{2}-42x+9=49\times \frac{\left(7x-3\right)\left(7x-3\right)}{49}
7 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
49x^{2}-42x+9=\left(7x-3\right)\left(7x-3\right)
49 ଏବଂ 49 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 49 ବାତିଲ୍‌ କରନ୍ତୁ.