ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

15x^{2}-13x-6=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=-13 ab=15\left(-6\right)=-90
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 15x^{2}+ax+bx-6 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -90 ପ୍ରଦାନ କରିଥାଏ.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-18 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -13 ପ୍ରଦାନ କରିଥାଏ.
\left(15x^{2}-18x\right)+\left(5x-6\right)
\left(15x^{2}-18x\right)+\left(5x-6\right) ଭାବରେ 15x^{2}-13x-6 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(5x-6\right)+5x-6
15x^{2}-18xରେ 3x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5x-6\right)\left(3x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5x-6 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{6}{5} x=-\frac{1}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 5x-6=0 ଏବଂ 3x+1=0 ସମାଧାନ କରନ୍ତୁ.
45x^{2}-39x-18=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 45\left(-18\right)}}{2\times 45}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 45, b ପାଇଁ -39, ଏବଂ c ପାଇଁ -18 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-39\right)±\sqrt{1521-4\times 45\left(-18\right)}}{2\times 45}
ବର୍ଗ -39.
x=\frac{-\left(-39\right)±\sqrt{1521-180\left(-18\right)}}{2\times 45}
-4 କୁ 45 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-39\right)±\sqrt{1521+3240}}{2\times 45}
-180 କୁ -18 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-39\right)±\sqrt{4761}}{2\times 45}
1521 କୁ 3240 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-39\right)±69}{2\times 45}
4761 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{39±69}{2\times 45}
-39 ର ବିପରୀତ ହେଉଛି 39.
x=\frac{39±69}{90}
2 କୁ 45 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{108}{90}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{39±69}{90} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 39 କୁ 69 ସହ ଯୋଡନ୍ତୁ.
x=\frac{6}{5}
18 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{108}{90} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{30}{90}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{39±69}{90} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 39 ରୁ 69 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{1}{3}
30 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-30}{90} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{6}{5} x=-\frac{1}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
45x^{2}-39x-18=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
45x^{2}-39x-18-\left(-18\right)=-\left(-18\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 18 ଯୋଡନ୍ତୁ.
45x^{2}-39x=-\left(-18\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -18 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
45x^{2}-39x=18
0 ରୁ -18 ବିୟୋଗ କରନ୍ତୁ.
\frac{45x^{2}-39x}{45}=\frac{18}{45}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 45 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{39}{45}\right)x=\frac{18}{45}
45 ଦ୍ୱାରା ବିଭାଜନ କରିବା 45 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{13}{15}x=\frac{18}{45}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-39}{45} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{13}{15}x=\frac{2}{5}
9 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{18}{45} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{13}{15}x+\left(-\frac{13}{30}\right)^{2}=\frac{2}{5}+\left(-\frac{13}{30}\right)^{2}
-\frac{13}{30} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{13}{15} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{13}{30} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{13}{15}x+\frac{169}{900}=\frac{2}{5}+\frac{169}{900}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{13}{30} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{13}{15}x+\frac{169}{900}=\frac{529}{900}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{169}{900} ସହିତ \frac{2}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{13}{30}\right)^{2}=\frac{529}{900}
ଗୁଣନୀୟକ x^{2}-\frac{13}{15}x+\frac{169}{900}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{13}{30}\right)^{2}}=\sqrt{\frac{529}{900}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{13}{30}=\frac{23}{30} x-\frac{13}{30}=-\frac{23}{30}
ସରଳୀକୃତ କରିବା.
x=\frac{6}{5} x=-\frac{1}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{30} ଯୋଡନ୍ତୁ.