ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-5 ab=42\left(-3\right)=-126
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 42x^{2}+ax+bx-3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-126 2,-63 3,-42 6,-21 7,-18 9,-14
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -126 ପ୍ରଦାନ କରିଥାଏ.
1-126=-125 2-63=-61 3-42=-39 6-21=-15 7-18=-11 9-14=-5
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-14 b=9
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(42x^{2}-14x\right)+\left(9x-3\right)
\left(42x^{2}-14x\right)+\left(9x-3\right) ଭାବରେ 42x^{2}-5x-3 ପୁନଃ ଲେଖନ୍ତୁ.
14x\left(3x-1\right)+3\left(3x-1\right)
ପ୍ରଥମଟିରେ 14x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3x-1\right)\left(14x+3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{1}{3} x=-\frac{3}{14}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 3x-1=0 ଏବଂ 14x+3=0 ସମାଧାନ କରନ୍ତୁ.
42x^{2}-5x-3=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 42\left(-3\right)}}{2\times 42}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 42, b ପାଇଁ -5, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 42\left(-3\right)}}{2\times 42}
ବର୍ଗ -5.
x=\frac{-\left(-5\right)±\sqrt{25-168\left(-3\right)}}{2\times 42}
-4 କୁ 42 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{25+504}}{2\times 42}
-168 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{529}}{2\times 42}
25 କୁ 504 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-5\right)±23}{2\times 42}
529 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{5±23}{2\times 42}
-5 ର ବିପରୀତ ହେଉଛି 5.
x=\frac{5±23}{84}
2 କୁ 42 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{28}{84}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±23}{84} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ 23 ସହ ଯୋଡନ୍ତୁ.
x=\frac{1}{3}
28 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{28}{84} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{18}{84}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±23}{84} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ 23 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{3}{14}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-18}{84} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{1}{3} x=-\frac{3}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
42x^{2}-5x-3=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
42x^{2}-5x-3-\left(-3\right)=-\left(-3\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
42x^{2}-5x=-\left(-3\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
42x^{2}-5x=3
0 ରୁ -3 ବିୟୋଗ କରନ୍ତୁ.
\frac{42x^{2}-5x}{42}=\frac{3}{42}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 42 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{5}{42}x=\frac{3}{42}
42 ଦ୍ୱାରା ବିଭାଜନ କରିବା 42 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{5}{42}x=\frac{1}{14}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{3}{42} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{5}{42}x+\left(-\frac{5}{84}\right)^{2}=\frac{1}{14}+\left(-\frac{5}{84}\right)^{2}
-\frac{5}{84} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{5}{42} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{84} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{5}{42}x+\frac{25}{7056}=\frac{1}{14}+\frac{25}{7056}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{84} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{5}{42}x+\frac{25}{7056}=\frac{529}{7056}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{7056} ସହିତ \frac{1}{14} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{5}{84}\right)^{2}=\frac{529}{7056}
ଗୁଣନୀୟକ x^{2}-\frac{5}{42}x+\frac{25}{7056}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{84}\right)^{2}}=\sqrt{\frac{529}{7056}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{84}=\frac{23}{84} x-\frac{5}{84}=-\frac{23}{84}
ସରଳୀକୃତ କରିବା.
x=\frac{1}{3} x=-\frac{3}{14}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{84} ଯୋଡନ୍ତୁ.