ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4-2x^{2}-\frac{2}{3}x=4
-2x^{2} ପାଇବାକୁ -x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4-2x^{2}-\frac{2}{3}x-4=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}-\frac{2}{3}x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
x\left(-2x-\frac{2}{3}\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=-\frac{1}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ -2x-\frac{2}{3}=0 ସମାଧାନ କରନ୍ତୁ.
4-2x^{2}-\frac{2}{3}x=4
-2x^{2} ପାଇବାକୁ -x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4-2x^{2}-\frac{2}{3}x-4=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}-\frac{2}{3}x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}}}{2\left(-2\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -2, b ପାଇଁ -\frac{2}{3}, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-\frac{2}{3}\right)±\frac{2}{3}}{2\left(-2\right)}
\left(-\frac{2}{3}\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{\frac{2}{3}±\frac{2}{3}}{2\left(-2\right)}
-\frac{2}{3} ର ବିପରୀତ ହେଉଛି \frac{2}{3}.
x=\frac{\frac{2}{3}±\frac{2}{3}}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\frac{4}{3}}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{2}{3}±\frac{2}{3}}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{2}{3} ସହିତ \frac{2}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-\frac{1}{3}
\frac{4}{3} କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{0}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{2}{3}±\frac{2}{3}}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{2}{3} ରୁ \frac{2}{3} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=0
0 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{1}{3} x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4-2x^{2}-\frac{2}{3}x=4
-2x^{2} ପାଇବାକୁ -x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}-\frac{2}{3}x=4-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}-\frac{2}{3}x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
\frac{-2x^{2}-\frac{2}{3}x}{-2}=\frac{0}{-2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{\frac{2}{3}}{-2}\right)x=\frac{0}{-2}
-2 ଦ୍ୱାରା ବିଭାଜନ କରିବା -2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{1}{3}x=\frac{0}{-2}
-\frac{2}{3} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{1}{3}x=0
0 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\left(\frac{1}{6}\right)^{2}
\frac{1}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{1}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x+\frac{1}{6}\right)^{2}=\frac{1}{36}
ଗୁଣନୀୟକ x^{2}+\frac{1}{3}x+\frac{1}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{6}=\frac{1}{6} x+\frac{1}{6}=-\frac{1}{6}
ସରଳୀକୃତ କରିବା.
x=0 x=-\frac{1}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{6} ବିୟୋଗ କରନ୍ତୁ.