x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=-\frac{\sqrt{31}i}{31}\approx -0-0.179605302i
x=\frac{\sqrt{31}i}{31}\approx 0.179605302i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
124x^{2}=-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
x^{2}=\frac{-4}{124}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 124 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}=-\frac{1}{31}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-4}{124} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{\sqrt{31}i}{31} x=-\frac{\sqrt{31}i}{31}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
124x^{2}+4=0
ଏହି ଗୋଟିଏ ପରି କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ, ଏକ x^{2} ପଦ ସହିତ କିନ୍ତୁ x ପଦ ନାହିଁ, କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର, \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ବର୍ତ୍ତମାନ ମଧ୍ୟ ସମାଧାନ କରାଯାଇପାରିବ, ଏକଦା ସେଗୁଡିକ ମାନାଙ୍କ ଆକାରରେ: ax^{2}+bx+c=0 ରଖାଯିବା ପରେ.
x=\frac{0±\sqrt{0^{2}-4\times 124\times 4}}{2\times 124}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 124, b ପାଇଁ 0, ଏବଂ c ପାଇଁ 4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{0±\sqrt{-4\times 124\times 4}}{2\times 124}
ବର୍ଗ 0.
x=\frac{0±\sqrt{-496\times 4}}{2\times 124}
-4 କୁ 124 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0±\sqrt{-1984}}{2\times 124}
-496 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0±8\sqrt{31}i}{2\times 124}
-1984 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{0±8\sqrt{31}i}{248}
2 କୁ 124 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{31}i}{31}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{0±8\sqrt{31}i}{248} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ.
x=-\frac{\sqrt{31}i}{31}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{0±8\sqrt{31}i}{248} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ.
x=\frac{\sqrt{31}i}{31} x=-\frac{\sqrt{31}i}{31}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}