ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4x^{2}+x-2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-1±\sqrt{1^{2}-4\times 4\left(-2\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 1, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1-4\times 4\left(-2\right)}}{2\times 4}
ବର୍ଗ 1.
x=\frac{-1±\sqrt{1-16\left(-2\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1+32}}{2\times 4}
-16 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{33}}{2\times 4}
1 କୁ 32 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-1±\sqrt{33}}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{33}-1}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±\sqrt{33}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -1 କୁ \sqrt{33} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{33}-1}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±\sqrt{33}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -1 ରୁ \sqrt{33} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{33}-1}{8} x=\frac{-\sqrt{33}-1}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}+x-2=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
4x^{2}+x-2-\left(-2\right)=-\left(-2\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
4x^{2}+x=-\left(-2\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -2 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
4x^{2}+x=2
0 ରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
\frac{4x^{2}+x}{4}=\frac{2}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{1}{4}x=\frac{2}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{1}{4}x=\frac{1}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{1}{2}+\left(\frac{1}{8}\right)^{2}
\frac{1}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{1}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{2}+\frac{1}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{33}{64}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{64} ସହିତ \frac{1}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{8}\right)^{2}=\frac{33}{64}
ଗୁଣନୀୟକ x^{2}+\frac{1}{4}x+\frac{1}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{33}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{8}=\frac{\sqrt{33}}{8} x+\frac{1}{8}=-\frac{\sqrt{33}}{8}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{33}-1}{8} x=\frac{-\sqrt{33}-1}{8}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{8} ବିୟୋଗ କରନ୍ତୁ.