x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-5
x=-2
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}+7x+10=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=7 ab=1\times 10=10
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx+10 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,10 2,5
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 10 ପ୍ରଦାନ କରିଥାଏ.
1+10=11 2+5=7
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=2 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 7 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}+2x\right)+\left(5x+10\right)
\left(x^{2}+2x\right)+\left(5x+10\right) ଭାବରେ x^{2}+7x+10 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x+2\right)+5\left(x+2\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x+2\right)\left(x+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x+2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=-2 x=-5
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x+2=0 ଏବଂ x+5=0 ସମାଧାନ କରନ୍ତୁ.
4x^{2}+28x+40=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-28±\sqrt{28^{2}-4\times 4\times 40}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 28, ଏବଂ c ପାଇଁ 40 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-4\times 4\times 40}}{2\times 4}
ବର୍ଗ 28.
x=\frac{-28±\sqrt{784-16\times 40}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-640}}{2\times 4}
-16 କୁ 40 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{144}}{2\times 4}
784 କୁ -640 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-28±12}{2\times 4}
144 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-28±12}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{16}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-28±12}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -28 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
x=-2
-16 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{40}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-28±12}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -28 ରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
x=-5
-40 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-2 x=-5
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}+28x+40=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
4x^{2}+28x+40-40=-40
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 40 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+28x=-40
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 40 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{4x^{2}+28x}{4}=-\frac{40}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{28}{4}x=-\frac{40}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+7x=-\frac{40}{4}
28 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+7x=-10
-40 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-10+\left(\frac{7}{2}\right)^{2}
\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+7x+\frac{49}{4}=-10+\frac{49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+7x+\frac{49}{4}=\frac{9}{4}
-10 କୁ \frac{49}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{7}{2}\right)^{2}=\frac{9}{4}
ଗୁଣନୀୟକ x^{2}+7x+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{2}=\frac{3}{2} x+\frac{7}{2}=-\frac{3}{2}
ସରଳୀକୃତ କରିବା.
x=-2 x=-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}