x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{15\sqrt{13}-55}{4}\approx -0.229182717
x=\frac{-15\sqrt{13}-55}{4}\approx -27.270817283
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4x^{2}+110x+25=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-110±\sqrt{110^{2}-4\times 4\times 25}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 110, ଏବଂ c ପାଇଁ 25 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-110±\sqrt{12100-4\times 4\times 25}}{2\times 4}
ବର୍ଗ 110.
x=\frac{-110±\sqrt{12100-16\times 25}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-110±\sqrt{12100-400}}{2\times 4}
-16 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-110±\sqrt{11700}}{2\times 4}
12100 କୁ -400 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-110±30\sqrt{13}}{2\times 4}
11700 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-110±30\sqrt{13}}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{30\sqrt{13}-110}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-110±30\sqrt{13}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -110 କୁ 30\sqrt{13} ସହ ଯୋଡନ୍ତୁ.
x=\frac{15\sqrt{13}-55}{4}
-110+30\sqrt{13} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-30\sqrt{13}-110}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-110±30\sqrt{13}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -110 ରୁ 30\sqrt{13} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-15\sqrt{13}-55}{4}
-110-30\sqrt{13} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{15\sqrt{13}-55}{4} x=\frac{-15\sqrt{13}-55}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}+110x+25=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
4x^{2}+110x+25-25=-25
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 25 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+110x=-25
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 25 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{4x^{2}+110x}{4}=-\frac{25}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{110}{4}x=-\frac{25}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{55}{2}x=-\frac{25}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{110}{4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{55}{2}x+\left(\frac{55}{4}\right)^{2}=-\frac{25}{4}+\left(\frac{55}{4}\right)^{2}
\frac{55}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{55}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{55}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{55}{2}x+\frac{3025}{16}=-\frac{25}{4}+\frac{3025}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{55}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{55}{2}x+\frac{3025}{16}=\frac{2925}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{3025}{16} ସହିତ -\frac{25}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{55}{4}\right)^{2}=\frac{2925}{16}
ଗୁଣନୀୟକ x^{2}+\frac{55}{2}x+\frac{3025}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{55}{4}\right)^{2}}=\sqrt{\frac{2925}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{55}{4}=\frac{15\sqrt{13}}{4} x+\frac{55}{4}=-\frac{15\sqrt{13}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{15\sqrt{13}-55}{4} x=\frac{-15\sqrt{13}-55}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{55}{4} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}