x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(4x\right)^{2}=\left(\sqrt{30+4x}\right)^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
4^{2}x^{2}=\left(\sqrt{30+4x}\right)^{2}
ବିସ୍ତାର କରନ୍ତୁ \left(4x\right)^{2}.
16x^{2}=\left(\sqrt{30+4x}\right)^{2}
2 ର 4 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 16 ପ୍ରାପ୍ତ କରନ୍ତୁ.
16x^{2}=30+4x
2 ର \sqrt{30+4x} ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 30+4x ପ୍ରାପ୍ତ କରନ୍ତୁ.
16x^{2}-30=4x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ.
16x^{2}-30-4x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-15-2x=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
8x^{2}-2x-15=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-2 ab=8\left(-15\right)=-120
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 8x^{2}+ax+bx-15 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -120 ପ୍ରଦାନ କରିଥାଏ.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-12 b=10
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -2 ପ୍ରଦାନ କରିଥାଏ.
\left(8x^{2}-12x\right)+\left(10x-15\right)
\left(8x^{2}-12x\right)+\left(10x-15\right) ଭାବରେ 8x^{2}-2x-15 ପୁନଃ ଲେଖନ୍ତୁ.
4x\left(2x-3\right)+5\left(2x-3\right)
ପ୍ରଥମଟିରେ 4x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-3\right)\left(4x+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{3}{2} x=-\frac{5}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x-3=0 ଏବଂ 4x+5=0 ସମାଧାନ କରନ୍ତୁ.
4\times \frac{3}{2}=\sqrt{30+4\times \frac{3}{2}}
ସମୀକରଣ 4x=\sqrt{30+4x} ରେ x ସ୍ଥାନରେ \frac{3}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
6=6
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ x=\frac{3}{2} ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
4\left(-\frac{5}{4}\right)=\sqrt{30+4\left(-\frac{5}{4}\right)}
ସମୀକରଣ 4x=\sqrt{30+4x} ରେ x ସ୍ଥାନରେ -\frac{5}{4} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-5=5
ସରଳୀକୃତ କରନ୍ତୁ. x=-\frac{5}{4} ମୂଲ୍ୟ ସମୀକରଣକୁ ସନ୍ତୁଷ୍ଟ କରେ ନାହିଁ କାରଣ ବାମ ଏବଂ ଡାହାଣ ପାର୍ଶ୍ୱରେ ବିପରୀତ ଚିହ୍ନ ଥାଏ.
x=\frac{3}{2}
ସମୀକରଣ 4x=\sqrt{4x+30} ଏକ ସ୍ଵତନ୍ତ୍ର ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}