ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

t\left(4t-10\right)=0
t ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
t=0 t=\frac{5}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, t=0 ଏବଂ 4t-10=0 ସମାଧାନ କରନ୍ତୁ.
4t^{2}-10t=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -10, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-\left(-10\right)±10}{2\times 4}
\left(-10\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{10±10}{2\times 4}
-10 ର ବିପରୀତ ହେଉଛି 10.
t=\frac{10±10}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{20}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{10±10}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 10 କୁ 10 ସହ ଯୋଡନ୍ତୁ.
t=\frac{5}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{20}{8} ହ୍ରାସ କରନ୍ତୁ.
t=\frac{0}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{10±10}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 10 ରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
t=0
0 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=\frac{5}{2} t=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4t^{2}-10t=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{4t^{2}-10t}{4}=\frac{0}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+\left(-\frac{10}{4}\right)t=\frac{0}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
t^{2}-\frac{5}{2}t=\frac{0}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-10}{4} ହ୍ରାସ କରନ୍ତୁ.
t^{2}-\frac{5}{2}t=0
0 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-\frac{5}{2}t+\left(-\frac{5}{4}\right)^{2}=\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{5}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}-\frac{5}{2}t+\frac{25}{16}=\frac{25}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(t-\frac{5}{4}\right)^{2}=\frac{25}{16}
ଗୁଣନୀୟକ t^{2}-\frac{5}{2}t+\frac{25}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t-\frac{5}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t-\frac{5}{4}=\frac{5}{4} t-\frac{5}{4}=-\frac{5}{4}
ସରଳୀକୃତ କରିବା.
t=\frac{5}{2} t=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{4} ଯୋଡନ୍ତୁ.