ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
p ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-3 ab=4\left(-10\right)=-40
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 4p^{2}+ap+bp-10 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-40 2,-20 4,-10 5,-8
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -40 ପ୍ରଦାନ କରିଥାଏ.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-8 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -3 ପ୍ରଦାନ କରିଥାଏ.
\left(4p^{2}-8p\right)+\left(5p-10\right)
\left(4p^{2}-8p\right)+\left(5p-10\right) ଭାବରେ 4p^{2}-3p-10 ପୁନଃ ଲେଖନ୍ତୁ.
4p\left(p-2\right)+5\left(p-2\right)
ପ୍ରଥମଟିରେ 4p ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(p-2\right)\left(4p+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ p-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
p=2 p=-\frac{5}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, p-2=0 ଏବଂ 4p+5=0 ସମାଧାନ କରନ୍ତୁ.
4p^{2}-3p-10=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-10\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -3, ଏବଂ c ପାଇଁ -10 ପ୍ରତିବଦଳ କରନ୍ତୁ.
p=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-10\right)}}{2\times 4}
ବର୍ଗ -3.
p=\frac{-\left(-3\right)±\sqrt{9-16\left(-10\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-\left(-3\right)±\sqrt{9+160}}{2\times 4}
-16 କୁ -10 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-\left(-3\right)±\sqrt{169}}{2\times 4}
9 କୁ 160 ସହ ଯୋଡନ୍ତୁ.
p=\frac{-\left(-3\right)±13}{2\times 4}
169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
p=\frac{3±13}{2\times 4}
-3 ର ବିପରୀତ ହେଉଛି 3.
p=\frac{3±13}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{16}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{3±13}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ 13 ସହ ଯୋଡନ୍ତୁ.
p=2
16 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p=-\frac{10}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{3±13}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
p=-\frac{5}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-10}{8} ହ୍ରାସ କରନ୍ତୁ.
p=2 p=-\frac{5}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4p^{2}-3p-10=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
4p^{2}-3p-10-\left(-10\right)=-\left(-10\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 10 ଯୋଡନ୍ତୁ.
4p^{2}-3p=-\left(-10\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -10 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
4p^{2}-3p=10
0 ରୁ -10 ବିୟୋଗ କରନ୍ତୁ.
\frac{4p^{2}-3p}{4}=\frac{10}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p^{2}-\frac{3}{4}p=\frac{10}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
p^{2}-\frac{3}{4}p=\frac{5}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{10}{4} ହ୍ରାସ କରନ୍ତୁ.
p^{2}-\frac{3}{4}p+\left(-\frac{3}{8}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{8}\right)^{2}
-\frac{3}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{3}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
p^{2}-\frac{3}{4}p+\frac{9}{64}=\frac{5}{2}+\frac{9}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
p^{2}-\frac{3}{4}p+\frac{9}{64}=\frac{169}{64}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{64} ସହିତ \frac{5}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(p-\frac{3}{8}\right)^{2}=\frac{169}{64}
ଗୁଣନୀୟକ p^{2}-\frac{3}{4}p+\frac{9}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(p-\frac{3}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
p-\frac{3}{8}=\frac{13}{8} p-\frac{3}{8}=-\frac{13}{8}
ସରଳୀକୃତ କରିବା.
p=2 p=-\frac{5}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{8} ଯୋଡନ୍ତୁ.