ଗୁଣକ
4\left(n-\frac{1-\sqrt{12993}}{8}\right)\left(n-\frac{\sqrt{12993}+1}{8}\right)
ମୂଲ୍ୟାୟନ କରିବା
4n^{2}-n-812
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4n^{2}-n-812=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
n=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-812\right)}}{2\times 4}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
n=\frac{-\left(-1\right)±\sqrt{1-16\left(-812\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-1\right)±\sqrt{1+12992}}{2\times 4}
-16 କୁ -812 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-1\right)±\sqrt{12993}}{2\times 4}
1 କୁ 12992 ସହ ଯୋଡନ୍ତୁ.
n=\frac{1±\sqrt{12993}}{2\times 4}
-1 ର ବିପରୀତ ହେଉଛି 1.
n=\frac{1±\sqrt{12993}}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{\sqrt{12993}+1}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{1±\sqrt{12993}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ \sqrt{12993} ସହ ଯୋଡନ୍ତୁ.
n=\frac{1-\sqrt{12993}}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{1±\sqrt{12993}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ \sqrt{12993} ବିୟୋଗ କରନ୍ତୁ.
4n^{2}-n-812=4\left(n-\frac{\sqrt{12993}+1}{8}\right)\left(n-\frac{1-\sqrt{12993}}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{1+\sqrt{12993}}{8} ଏବଂ x_{2} ପାଇଁ \frac{1-\sqrt{12993}}{8} ପ୍ରତିବଦଳ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}