ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4\left(x^{2}+2x+1\right)-169=0
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}+8x+4-169=0
4 କୁ x^{2}+2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}+8x-165=0
-165 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 169 ବିୟୋଗ କରନ୍ତୁ.
a+b=8 ab=4\left(-165\right)=-660
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 4x^{2}+ax+bx-165 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,660 -2,330 -3,220 -4,165 -5,132 -6,110 -10,66 -11,60 -12,55 -15,44 -20,33 -22,30
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -660 ପ୍ରଦାନ କରିଥାଏ.
-1+660=659 -2+330=328 -3+220=217 -4+165=161 -5+132=127 -6+110=104 -10+66=56 -11+60=49 -12+55=43 -15+44=29 -20+33=13 -22+30=8
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-22 b=30
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 8 ପ୍ରଦାନ କରିଥାଏ.
\left(4x^{2}-22x\right)+\left(30x-165\right)
\left(4x^{2}-22x\right)+\left(30x-165\right) ଭାବରେ 4x^{2}+8x-165 ପୁନଃ ଲେଖନ୍ତୁ.
2x\left(2x-11\right)+15\left(2x-11\right)
ପ୍ରଥମଟିରେ 2x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 15 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-11\right)\left(2x+15\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-11 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{11}{2} x=-\frac{15}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x-11=0 ଏବଂ 2x+15=0 ସମାଧାନ କରନ୍ତୁ.
4\left(x^{2}+2x+1\right)-169=0
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}+8x+4-169=0
4 କୁ x^{2}+2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}+8x-165=0
-165 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 169 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-8±\sqrt{8^{2}-4\times 4\left(-165\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 8, ଏବଂ c ପାଇଁ -165 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64-4\times 4\left(-165\right)}}{2\times 4}
ବର୍ଗ 8.
x=\frac{-8±\sqrt{64-16\left(-165\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64+2640}}{2\times 4}
-16 କୁ -165 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{2704}}{2\times 4}
64 କୁ 2640 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-8±52}{2\times 4}
2704 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-8±52}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{44}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±52}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -8 କୁ 52 ସହ ଯୋଡନ୍ତୁ.
x=\frac{11}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{44}{8} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{60}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±52}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -8 ରୁ 52 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{15}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-60}{8} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{11}{2} x=-\frac{15}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4\left(x^{2}+2x+1\right)-169=0
\left(x+1\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}+8x+4-169=0
4 କୁ x^{2}+2x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
4x^{2}+8x-165=0
-165 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 169 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+8x=165
ଉଭୟ ପାର୍ଶ୍ଵକୁ 165 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{4x^{2}+8x}{4}=\frac{165}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{8}{4}x=\frac{165}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+2x=\frac{165}{4}
8 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+2x+1^{2}=\frac{165}{4}+1^{2}
1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+2x+1=\frac{165}{4}+1
ବର୍ଗ 1.
x^{2}+2x+1=\frac{169}{4}
\frac{165}{4} କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(x+1\right)^{2}=\frac{169}{4}
ଗୁଣନୀୟକ x^{2}+2x+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{169}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+1=\frac{13}{2} x+1=-\frac{13}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{11}{2} x=-\frac{15}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.