ମୂଲ୍ୟାୟନ କରିବା
\left(3x-4y\right)\left(12x-25y\right)
ପ୍ରସାରଣ
36x^{2}-123xy+100y^{2}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4\left(9x^{2}-30xy+25y^{2}\right)-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
\left(3x-5y\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
36x^{2}-120xy+100y^{2}-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
4 କୁ 9x^{2}-30xy+25y^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
36x^{2}-120xy+100y^{2}-\left(4x^{2}+3xy-y^{2}\right)+\left(2x+y\right)\left(2x-y\right)
4x-y କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
36x^{2}-120xy+100y^{2}-4x^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
4x^{2}+3xy-y^{2} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
32x^{2}-120xy+100y^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
32x^{2} ପାଇବାକୁ 36x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
32x^{2}-123xy+100y^{2}+y^{2}+\left(2x+y\right)\left(2x-y\right)
-123xy ପାଇବାକୁ -120xy ଏବଂ -3xy ସମ୍ମେଳନ କରନ୍ତୁ.
32x^{2}-123xy+101y^{2}+\left(2x+y\right)\left(2x-y\right)
101y^{2} ପାଇବାକୁ 100y^{2} ଏବଂ y^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
32x^{2}-123xy+101y^{2}+\left(2x\right)^{2}-y^{2}
\left(2x+y\right)\left(2x-y\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
32x^{2}-123xy+101y^{2}+2^{2}x^{2}-y^{2}
ବିସ୍ତାର କରନ୍ତୁ \left(2x\right)^{2}.
32x^{2}-123xy+101y^{2}+4x^{2}-y^{2}
2 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
36x^{2}-123xy+101y^{2}-y^{2}
36x^{2} ପାଇବାକୁ 32x^{2} ଏବଂ 4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
36x^{2}-123xy+100y^{2}
100y^{2} ପାଇବାକୁ 101y^{2} ଏବଂ -y^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4\left(9x^{2}-30xy+25y^{2}\right)-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
\left(3x-5y\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
36x^{2}-120xy+100y^{2}-\left(4x-y\right)\left(x+y\right)+\left(2x+y\right)\left(2x-y\right)
4 କୁ 9x^{2}-30xy+25y^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
36x^{2}-120xy+100y^{2}-\left(4x^{2}+3xy-y^{2}\right)+\left(2x+y\right)\left(2x-y\right)
4x-y କୁ x+y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
36x^{2}-120xy+100y^{2}-4x^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
4x^{2}+3xy-y^{2} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
32x^{2}-120xy+100y^{2}-3xy+y^{2}+\left(2x+y\right)\left(2x-y\right)
32x^{2} ପାଇବାକୁ 36x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
32x^{2}-123xy+100y^{2}+y^{2}+\left(2x+y\right)\left(2x-y\right)
-123xy ପାଇବାକୁ -120xy ଏବଂ -3xy ସମ୍ମେଳନ କରନ୍ତୁ.
32x^{2}-123xy+101y^{2}+\left(2x+y\right)\left(2x-y\right)
101y^{2} ପାଇବାକୁ 100y^{2} ଏବଂ y^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
32x^{2}-123xy+101y^{2}+\left(2x\right)^{2}-y^{2}
\left(2x+y\right)\left(2x-y\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
32x^{2}-123xy+101y^{2}+2^{2}x^{2}-y^{2}
ବିସ୍ତାର କରନ୍ତୁ \left(2x\right)^{2}.
32x^{2}-123xy+101y^{2}+4x^{2}-y^{2}
2 ର 2 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 4 ପ୍ରାପ୍ତ କରନ୍ତୁ.
36x^{2}-123xy+101y^{2}-y^{2}
36x^{2} ପାଇବାକୁ 32x^{2} ଏବଂ 4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
36x^{2}-123xy+100y^{2}
100y^{2} ପାଇବାକୁ 101y^{2} ଏବଂ -y^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}