ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4x^{2}-4x-16=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-16\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -16 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-16\right)}}{2\times 4}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-16\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16+256}}{2\times 4}
-16 କୁ -16 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{272}}{2\times 4}
16 କୁ 256 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±4\sqrt{17}}{2\times 4}
272 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±4\sqrt{17}}{2\times 4}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±4\sqrt{17}}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4\sqrt{17}+4}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±4\sqrt{17}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 4\sqrt{17} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{17}+1}{2}
4+4\sqrt{17} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{4-4\sqrt{17}}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±4\sqrt{17}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 4\sqrt{17} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1-\sqrt{17}}{2}
4-4\sqrt{17} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{17}+1}{2} x=\frac{1-\sqrt{17}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}-4x-16=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
4x^{2}-4x-16-\left(-16\right)=-\left(-16\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 16 ଯୋଡନ୍ତୁ.
4x^{2}-4x=-\left(-16\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -16 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
4x^{2}-4x=16
0 ରୁ -16 ବିୟୋଗ କରନ୍ତୁ.
\frac{4x^{2}-4x}{4}=\frac{16}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{16}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-x=\frac{16}{4}
-4 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-x=4
16 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=4+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-x+\frac{1}{4}=4+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-x+\frac{1}{4}=\frac{17}{4}
4 କୁ \frac{1}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{1}{2}\right)^{2}=\frac{17}{4}
ଗୁଣନୀୟକ x^{2}-x+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{2}=\frac{\sqrt{17}}{2} x-\frac{1}{2}=-\frac{\sqrt{17}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{17}+1}{2} x=\frac{1-\sqrt{17}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ଯୋଡନ୍ତୁ.