ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-19 ab=30\left(-63\right)=-1890
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 30s^{2}+as+bs-63 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-1890 2,-945 3,-630 5,-378 6,-315 7,-270 9,-210 10,-189 14,-135 15,-126 18,-105 21,-90 27,-70 30,-63 35,-54 42,-45
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -1890 ପ୍ରଦାନ କରିଥାଏ.
1-1890=-1889 2-945=-943 3-630=-627 5-378=-373 6-315=-309 7-270=-263 9-210=-201 10-189=-179 14-135=-121 15-126=-111 18-105=-87 21-90=-69 27-70=-43 30-63=-33 35-54=-19 42-45=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-54 b=35
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -19 ପ୍ରଦାନ କରିଥାଏ.
\left(30s^{2}-54s\right)+\left(35s-63\right)
\left(30s^{2}-54s\right)+\left(35s-63\right) ଭାବରେ 30s^{2}-19s-63 ପୁନଃ ଲେଖନ୍ତୁ.
6s\left(5s-9\right)+7\left(5s-9\right)
ପ୍ରଥମଟିରେ 6s ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 7 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5s-9\right)\left(6s+7\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5s-9 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
30s^{2}-19s-63=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
s=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 30\left(-63\right)}}{2\times 30}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
s=\frac{-\left(-19\right)±\sqrt{361-4\times 30\left(-63\right)}}{2\times 30}
ବର୍ଗ -19.
s=\frac{-\left(-19\right)±\sqrt{361-120\left(-63\right)}}{2\times 30}
-4 କୁ 30 ଥର ଗୁଣନ କରନ୍ତୁ.
s=\frac{-\left(-19\right)±\sqrt{361+7560}}{2\times 30}
-120 କୁ -63 ଥର ଗୁଣନ କରନ୍ତୁ.
s=\frac{-\left(-19\right)±\sqrt{7921}}{2\times 30}
361 କୁ 7560 ସହ ଯୋଡନ୍ତୁ.
s=\frac{-\left(-19\right)±89}{2\times 30}
7921 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
s=\frac{19±89}{2\times 30}
-19 ର ବିପରୀତ ହେଉଛି 19.
s=\frac{19±89}{60}
2 କୁ 30 ଥର ଗୁଣନ କରନ୍ତୁ.
s=\frac{108}{60}
ବର୍ତ୍ତମାନ ସମୀକରଣ s=\frac{19±89}{60} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 19 କୁ 89 ସହ ଯୋଡନ୍ତୁ.
s=\frac{9}{5}
12 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{108}{60} ହ୍ରାସ କରନ୍ତୁ.
s=-\frac{70}{60}
ବର୍ତ୍ତମାନ ସମୀକରଣ s=\frac{19±89}{60} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 19 ରୁ 89 ବିୟୋଗ କରନ୍ତୁ.
s=-\frac{7}{6}
10 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-70}{60} ହ୍ରାସ କରନ୍ତୁ.
30s^{2}-19s-63=30\left(s-\frac{9}{5}\right)\left(s-\left(-\frac{7}{6}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{9}{5} ଏବଂ x_{2} ପାଇଁ -\frac{7}{6} ପ୍ରତିବଦଳ କରନ୍ତୁ.
30s^{2}-19s-63=30\left(s-\frac{9}{5}\right)\left(s+\frac{7}{6}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
30s^{2}-19s-63=30\times \frac{5s-9}{5}\left(s+\frac{7}{6}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା s ରୁ \frac{9}{5} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
30s^{2}-19s-63=30\times \frac{5s-9}{5}\times \frac{6s+7}{6}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା s ସହିତ \frac{7}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
30s^{2}-19s-63=30\times \frac{\left(5s-9\right)\left(6s+7\right)}{5\times 6}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{5s-9}{5} କୁ \frac{6s+7}{6} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
30s^{2}-19s-63=30\times \frac{\left(5s-9\right)\left(6s+7\right)}{30}
5 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
30s^{2}-19s-63=\left(5s-9\right)\left(6s+7\right)
30 ଏବଂ 30 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 30 ବାତିଲ୍‌ କରନ୍ତୁ.