ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍
କ୍ୱିଜ୍‌
Polynomial

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3y^{2}+21y=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 21y ଯୋଡନ୍ତୁ.
y\left(3y+21\right)=0
y ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
y=0 y=-7
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, y=0 ଏବଂ 3y+21=0 ସମାଧାନ କରନ୍ତୁ.
3y^{2}+21y=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 21y ଯୋଡନ୍ତୁ.
y=\frac{-21±\sqrt{21^{2}}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ 21, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y=\frac{-21±21}{2\times 3}
21^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=\frac{-21±21}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{0}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-21±21}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -21 କୁ 21 ସହ ଯୋଡନ୍ତୁ.
y=0
0 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=-\frac{42}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{-21±21}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -21 ରୁ 21 ବିୟୋଗ କରନ୍ତୁ.
y=-7
-42 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=0 y=-7
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3y^{2}+21y=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 21y ଯୋଡନ୍ତୁ.
\frac{3y^{2}+21y}{3}=\frac{0}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+\frac{21}{3}y=\frac{0}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
y^{2}+7y=\frac{0}{3}
21 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+7y=0
0 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}+7y+\left(\frac{7}{2}\right)^{2}=\left(\frac{7}{2}\right)^{2}
\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
y^{2}+7y+\frac{49}{4}=\frac{49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(y+\frac{7}{2}\right)^{2}=\frac{49}{4}
ଗୁଣନୀୟକ y^{2}+7y+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(y+\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
y+\frac{7}{2}=\frac{7}{2} y+\frac{7}{2}=-\frac{7}{2}
ସରଳୀକୃତ କରିବା.
y=0 y=-7
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{2} ବିୟୋଗ କରନ୍ତୁ.