ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x-15=2x^{2}-10x
2x କୁ x-5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-15-2x^{2}=-10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
3x-15-2x^{2}+10x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
13x-15-2x^{2}=0
13x ପାଇବାକୁ 3x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}+13x-15=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=13 ab=-2\left(-15\right)=30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -2x^{2}+ax+bx-15 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,30 2,15 3,10 5,6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 30 ପ୍ରଦାନ କରିଥାଏ.
1+30=31 2+15=17 3+10=13 5+6=11
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=10 b=3
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 13 ପ୍ରଦାନ କରିଥାଏ.
\left(-2x^{2}+10x\right)+\left(3x-15\right)
\left(-2x^{2}+10x\right)+\left(3x-15\right) ଭାବରେ -2x^{2}+13x-15 ପୁନଃ ଲେଖନ୍ତୁ.
2x\left(-x+5\right)-3\left(-x+5\right)
ପ୍ରଥମଟିରେ 2x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-x+5\right)\left(2x-3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -x+5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=5 x=\frac{3}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, -x+5=0 ଏବଂ 2x-3=0 ସମାଧାନ କରନ୍ତୁ.
3x-15=2x^{2}-10x
2x କୁ x-5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-15-2x^{2}=-10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
3x-15-2x^{2}+10x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
13x-15-2x^{2}=0
13x ପାଇବାକୁ 3x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}+13x-15=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -2, b ପାଇଁ 13, ଏବଂ c ପାଇଁ -15 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-13±\sqrt{169-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
ବର୍ଗ 13.
x=\frac{-13±\sqrt{169+8\left(-15\right)}}{2\left(-2\right)}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-13±\sqrt{169-120}}{2\left(-2\right)}
8 କୁ -15 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-13±\sqrt{49}}{2\left(-2\right)}
169 କୁ -120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-13±7}{2\left(-2\right)}
49 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-13±7}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{6}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-13±7}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -13 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
x=\frac{3}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{-4} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{20}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-13±7}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -13 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
x=5
-20 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{3}{2} x=5
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x-15=2x^{2}-10x
2x କୁ x-5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x-15-2x^{2}=-10x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
3x-15-2x^{2}+10x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
13x-15-2x^{2}=0
13x ପାଇବାକୁ 3x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
13x-2x^{2}=15
ଉଭୟ ପାର୍ଶ୍ଵକୁ 15 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
-2x^{2}+13x=15
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-2x^{2}+13x}{-2}=\frac{15}{-2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{13}{-2}x=\frac{15}{-2}
-2 ଦ୍ୱାରା ବିଭାଜନ କରିବା -2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{13}{2}x=\frac{15}{-2}
13 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{13}{2}x=-\frac{15}{2}
15 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{15}{2}+\left(-\frac{13}{4}\right)^{2}
-\frac{13}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{13}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{13}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{15}{2}+\frac{169}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{13}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{49}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{169}{16} ସହିତ -\frac{15}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{13}{4}\right)^{2}=\frac{49}{16}
ଗୁଣନୀୟକ x^{2}-\frac{13}{2}x+\frac{169}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{13}{4}=\frac{7}{4} x-\frac{13}{4}=-\frac{7}{4}
ସରଳୀକୃତ କରିବା.
x=5 x=\frac{3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{4} ଯୋଡନ୍ତୁ.