ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}+6x-\left(x+1\right)\left(x-2\right)=2
3x କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}+6x-\left(x^{2}-x-2\right)=2
x+1 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
3x^{2}+6x-x^{2}+x+2=2
x^{2}-x-2 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2x^{2}+6x+x+2=2
2x^{2} ପାଇବାକୁ 3x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+7x+2=2
7x ପାଇବାକୁ 6x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+7x+2-2=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+7x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-7±\sqrt{7^{2}}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 7, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±7}{2\times 2}
7^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-7±7}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±7}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ 7 ସହ ଯୋଡନ୍ତୁ.
x=0
0 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{14}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±7}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{7}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-14}{4} ହ୍ରାସ କରନ୍ତୁ.
x=0 x=-\frac{7}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}+6x-\left(x+1\right)\left(x-2\right)=2
3x କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}+6x-\left(x^{2}-x-2\right)=2
x+1 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
3x^{2}+6x-x^{2}+x+2=2
x^{2}-x-2 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2x^{2}+6x+x+2=2
2x^{2} ପାଇବାକୁ 3x^{2} ଏବଂ -x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+7x+2=2
7x ପାଇବାକୁ 6x ଏବଂ x ସମ୍ମେଳନ କରନ୍ତୁ.
2x^{2}+7x=2-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+7x=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
\frac{2x^{2}+7x}{2}=\frac{0}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{2}x=\frac{0}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{7}{2}x=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\left(\frac{7}{4}\right)^{2}
\frac{7}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{7}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{49}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x+\frac{7}{4}\right)^{2}=\frac{49}{16}
ଗୁଣନୀୟକ x^{2}+\frac{7}{2}x+\frac{49}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{4}=\frac{7}{4} x+\frac{7}{4}=-\frac{7}{4}
ସରଳୀକୃତ କରିବା.
x=0 x=-\frac{7}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{4} ବିୟୋଗ କରନ୍ତୁ.