ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-32 ab=3\times 84=252
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 3x^{2}+ax+bx+84 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-252 -2,-126 -3,-84 -4,-63 -6,-42 -7,-36 -9,-28 -12,-21 -14,-18
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 252 ପ୍ରଦାନ କରିଥାଏ.
-1-252=-253 -2-126=-128 -3-84=-87 -4-63=-67 -6-42=-48 -7-36=-43 -9-28=-37 -12-21=-33 -14-18=-32
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-18 b=-14
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -32 ପ୍ରଦାନ କରିଥାଏ.
\left(3x^{2}-18x\right)+\left(-14x+84\right)
\left(3x^{2}-18x\right)+\left(-14x+84\right) ଭାବରେ 3x^{2}-32x+84 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(x-6\right)-14\left(x-6\right)
ପ୍ରଥମଟିରେ 3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -14 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-6\right)\left(3x-14\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-6 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=6 x=\frac{14}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-6=0 ଏବଂ 3x-14=0 ସମାଧାନ କରନ୍ତୁ.
3x^{2}-32x+84=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 3\times 84}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ -32, ଏବଂ c ପାଇଁ 84 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 3\times 84}}{2\times 3}
ବର୍ଗ -32.
x=\frac{-\left(-32\right)±\sqrt{1024-12\times 84}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{1024-1008}}{2\times 3}
-12 କୁ 84 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{16}}{2\times 3}
1024 କୁ -1008 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-32\right)±4}{2\times 3}
16 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{32±4}{2\times 3}
-32 ର ବିପରୀତ ହେଉଛି 32.
x=\frac{32±4}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{36}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{32±4}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 32 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
x=6
36 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{28}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{32±4}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 32 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{14}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{28}{6} ହ୍ରାସ କରନ୍ତୁ.
x=6 x=\frac{14}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}-32x+84=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
3x^{2}-32x+84-84=-84
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 84 ବିୟୋଗ କରନ୍ତୁ.
3x^{2}-32x=-84
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 84 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{3x^{2}-32x}{3}=-\frac{84}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{32}{3}x=-\frac{84}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{32}{3}x=-28
-84 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{32}{3}x+\left(-\frac{16}{3}\right)^{2}=-28+\left(-\frac{16}{3}\right)^{2}
-\frac{16}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{32}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{16}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{32}{3}x+\frac{256}{9}=-28+\frac{256}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{16}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{32}{3}x+\frac{256}{9}=\frac{4}{9}
-28 କୁ \frac{256}{9} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{16}{3}\right)^{2}=\frac{4}{9}
ଗୁଣନୀୟକ x^{2}-\frac{32}{3}x+\frac{256}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{16}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{16}{3}=\frac{2}{3} x-\frac{16}{3}=-\frac{2}{3}
ସରଳୀକୃତ କରିବା.
x=6 x=\frac{14}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{16}{3} ଯୋଡନ୍ତୁ.