ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}+7x=5
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
3x^{2}+7x-5=5-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
3x^{2}+7x-5=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-5\right)}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ 7, ଏବଂ c ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-4\times 3\left(-5\right)}}{2\times 3}
ବର୍ଗ 7.
x=\frac{-7±\sqrt{49-12\left(-5\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49+60}}{2\times 3}
-12 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{109}}{2\times 3}
49 କୁ 60 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-7±\sqrt{109}}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{109}-7}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±\sqrt{109}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ \sqrt{109} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{109}-7}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±\sqrt{109}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ \sqrt{109} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{\sqrt{109}-7}{6} x=\frac{-\sqrt{109}-7}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}+7x=5
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{3x^{2}+7x}{3}=\frac{5}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{3}x=\frac{5}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=\frac{5}{3}+\left(\frac{7}{6}\right)^{2}
\frac{7}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{7}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{5}{3}+\frac{49}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{109}{36}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{49}{36} ସହିତ \frac{5}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{7}{6}\right)^{2}=\frac{109}{36}
ଗୁଣନୀୟକ x^{2}+\frac{7}{3}x+\frac{49}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{109}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{6}=\frac{\sqrt{109}}{6} x+\frac{7}{6}=-\frac{\sqrt{109}}{6}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{109}-7}{6} x=\frac{-\sqrt{109}-7}{6}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{6} ବିୟୋଗ କରନ୍ତୁ.