ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}+4-9x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9x ବିୟୋଗ କରନ୍ତୁ.
3x^{2}-9x+4=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 4}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ -9, ଏବଂ c ପାଇଁ 4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 4}}{2\times 3}
ବର୍ଗ -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\times 4}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-9\right)±\sqrt{81-48}}{2\times 3}
-12 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-9\right)±\sqrt{33}}{2\times 3}
81 କୁ -48 ସହ ଯୋଡନ୍ତୁ.
x=\frac{9±\sqrt{33}}{2\times 3}
-9 ର ବିପରୀତ ହେଉଛି 9.
x=\frac{9±\sqrt{33}}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\sqrt{33}+9}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{9±\sqrt{33}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 9 କୁ \sqrt{33} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{33}}{6}+\frac{3}{2}
9+\sqrt{33} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{9-\sqrt{33}}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{9±\sqrt{33}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 9 ରୁ \sqrt{33} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{33}}{6}+\frac{3}{2}
9-\sqrt{33} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{33}}{6}+\frac{3}{2} x=-\frac{\sqrt{33}}{6}+\frac{3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}+4-9x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9x ବିୟୋଗ କରନ୍ତୁ.
3x^{2}-9x=-4
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{3x^{2}-9x}{3}=-\frac{4}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{9}{3}\right)x=-\frac{4}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-3x=-\frac{4}{3}
-9 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{4}{3}+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-3x+\frac{9}{4}=-\frac{4}{3}+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-3x+\frac{9}{4}=\frac{11}{12}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{4} ସହିତ -\frac{4}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{3}{2}\right)^{2}=\frac{11}{12}
ଗୁଣନୀୟକ x^{2}-3x+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{12}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{3}{2}=\frac{\sqrt{33}}{6} x-\frac{3}{2}=-\frac{\sqrt{33}}{6}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{33}}{6}+\frac{3}{2} x=-\frac{\sqrt{33}}{6}+\frac{3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ଯୋଡନ୍ତୁ.