ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}+15x-12=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-15±\sqrt{15^{2}-4\times 3\left(-12\right)}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ 15, ଏବଂ c ପାଇଁ -12 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-15±\sqrt{225-4\times 3\left(-12\right)}}{2\times 3}
ବର୍ଗ 15.
x=\frac{-15±\sqrt{225-12\left(-12\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-15±\sqrt{225+144}}{2\times 3}
-12 କୁ -12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-15±\sqrt{369}}{2\times 3}
225 କୁ 144 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-15±3\sqrt{41}}{2\times 3}
369 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-15±3\sqrt{41}}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{3\sqrt{41}-15}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-15±3\sqrt{41}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -15 କୁ 3\sqrt{41} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{41}-5}{2}
-15+3\sqrt{41} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-3\sqrt{41}-15}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-15±3\sqrt{41}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -15 ରୁ 3\sqrt{41} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{41}-5}{2}
-15-3\sqrt{41} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}+15x-12=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
3x^{2}+15x-12-\left(-12\right)=-\left(-12\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 12 ଯୋଡନ୍ତୁ.
3x^{2}+15x=-\left(-12\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -12 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
3x^{2}+15x=12
0 ରୁ -12 ବିୟୋଗ କରନ୍ତୁ.
\frac{3x^{2}+15x}{3}=\frac{12}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{15}{3}x=\frac{12}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+5x=\frac{12}{3}
15 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+5x=4
12 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=4+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+5x+\frac{25}{4}=4+\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+5x+\frac{25}{4}=\frac{41}{4}
4 କୁ \frac{25}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{5}{2}\right)^{2}=\frac{41}{4}
ଗୁଣନୀୟକ x^{2}+5x+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{5}{2}=\frac{\sqrt{41}}{2} x+\frac{5}{2}=-\frac{\sqrt{41}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{2} ବିୟୋଗ କରନ୍ତୁ.