ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
w ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

w\left(3w-27\right)=0
w ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
w=0 w=9
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, w=0 ଏବଂ 3w-27=0 ସମାଧାନ କରନ୍ତୁ.
3w^{2}-27w=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
w=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ -27, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
w=\frac{-\left(-27\right)±27}{2\times 3}
\left(-27\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
w=\frac{27±27}{2\times 3}
-27 ର ବିପରୀତ ହେଉଛି 27.
w=\frac{27±27}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
w=\frac{54}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ w=\frac{27±27}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 27 କୁ 27 ସହ ଯୋଡନ୍ତୁ.
w=9
54 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
w=\frac{0}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ w=\frac{27±27}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 27 ରୁ 27 ବିୟୋଗ କରନ୍ତୁ.
w=0
0 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
w=9 w=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3w^{2}-27w=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{3w^{2}-27w}{3}=\frac{0}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
w^{2}+\left(-\frac{27}{3}\right)w=\frac{0}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
w^{2}-9w=\frac{0}{3}
-27 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
w^{2}-9w=0
0 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
w^{2}-9w+\left(-\frac{9}{2}\right)^{2}=\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -9 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{9}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
w^{2}-9w+\frac{81}{4}=\frac{81}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{9}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(w-\frac{9}{2}\right)^{2}=\frac{81}{4}
ଗୁଣନୀୟକ w^{2}-9w+\frac{81}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(w-\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
w-\frac{9}{2}=\frac{9}{2} w-\frac{9}{2}=-\frac{9}{2}
ସରଳୀକୃତ କରିବା.
w=9 w=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{2} ଯୋଡନ୍ତୁ.