3 a y ^ { 2 } d y = a y ^ { 3 } + c
a ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}a=\frac{c}{\left(3d-1\right)y^{3}}\text{, }&y\neq 0\text{ and }d\neq \frac{1}{3}\\a\in \mathrm{C}\text{, }&\left(y=0\text{ or }d=\frac{1}{3}\right)\text{ and }c=0\end{matrix}\right.
a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}a=\frac{c}{\left(3d-1\right)y^{3}}\text{, }&y\neq 0\text{ and }d\neq \frac{1}{3}\\a\in \mathrm{R}\text{, }&\left(y=0\text{ or }d=\frac{1}{3}\right)\text{ and }c=0\end{matrix}\right.
c ପାଇଁ ସମାଧାନ କରନ୍ତୁ
c=a\left(3d-1\right)y^{3}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
3ay^{3}d=ay^{3}+c
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 3 ପାଇବାକୁ 2 ଏବଂ 1 ଯୋଡନ୍ତୁ.
3ay^{3}d-ay^{3}=c
ଉଭୟ ପାର୍ଶ୍ୱରୁ ay^{3} ବିୟୋଗ କରନ୍ତୁ.
3ady^{3}-ay^{3}=c
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
\left(3dy^{3}-y^{3}\right)a=c
a ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(3dy^{3}-y^{3}\right)a}{3dy^{3}-y^{3}}=\frac{c}{3dy^{3}-y^{3}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3dy^{3}-y^{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\frac{c}{3dy^{3}-y^{3}}
3dy^{3}-y^{3} ଦ୍ୱାରା ବିଭାଜନ କରିବା 3dy^{3}-y^{3} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
a=\frac{c}{\left(3d-1\right)y^{3}}
c କୁ 3dy^{3}-y^{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
3ay^{3}d=ay^{3}+c
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 3 ପାଇବାକୁ 2 ଏବଂ 1 ଯୋଡନ୍ତୁ.
3ay^{3}d-ay^{3}=c
ଉଭୟ ପାର୍ଶ୍ୱରୁ ay^{3} ବିୟୋଗ କରନ୍ତୁ.
3ady^{3}-ay^{3}=c
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
\left(3dy^{3}-y^{3}\right)a=c
a ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(3dy^{3}-y^{3}\right)a}{3dy^{3}-y^{3}}=\frac{c}{3dy^{3}-y^{3}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3dy^{3}-y^{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\frac{c}{3dy^{3}-y^{3}}
3dy^{3}-y^{3} ଦ୍ୱାରା ବିଭାଜନ କରିବା 3dy^{3}-y^{3} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
a=\frac{c}{\left(3d-1\right)y^{3}}
c କୁ 3dy^{3}-y^{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}