ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

t^{2}-4t+3
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-4 ab=1\times 3=3
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି t^{2}+at+bt+3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
a=-3 b=-1
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍‌ ସମାଧାନ.
\left(t^{2}-3t\right)+\left(-t+3\right)
\left(t^{2}-3t\right)+\left(-t+3\right) ଭାବରେ t^{2}-4t+3 ପୁନଃ ଲେଖନ୍ତୁ.
t\left(t-3\right)-\left(t-3\right)
ପ୍ରଥମଟିରେ t ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(t-3\right)\left(t-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ t-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
t^{2}-4t+3=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
ବର୍ଗ -4.
t=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-\left(-4\right)±\sqrt{4}}{2}
16 କୁ -12 ସହ ଯୋଡନ୍ତୁ.
t=\frac{-\left(-4\right)±2}{2}
4 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{4±2}{2}
-4 ର ବିପରୀତ ହେଉଛି 4.
t=\frac{6}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{4±2}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 2 ସହ ଯୋଡନ୍ତୁ.
t=3
6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=\frac{2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{4±2}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
t=1
2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-4t+3=\left(t-3\right)\left(t-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 3 ଏବଂ x_{2} ପାଇଁ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.