ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{4}+x^{3}+2x^{2}+4x-40=0
ଅଭ୍ୟବ୍ୟକ୍ତିକୁ ଫ୍ୟାକ୍ଟର କରିବାକୁ, ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଏହା 0 ସହ ସମାନ ହୋଇଥାଏ.
±\frac{40}{3},±40,±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{8}{3},±8,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍‌ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍‌ -40 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 3କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=-2
ସମସ୍ତ ଇଣ୍ଟିଜର୍‌ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍‌ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
3x^{3}-5x^{2}+12x-20=0
ଗୁଣନୀୟକ ଥିଓରମ୍‌ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍‌ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. 3x^{3}-5x^{2}+12x-20 ପ୍ରାପ୍ତ କରିବାକୁ 3x^{4}+x^{3}+2x^{2}+4x-40 କୁ x+2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ଫଳାଫଳକୁ ଫ୍ୟାକ୍ଟର କରିବାକୁ, ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଏହା 0 ସହ ସମାନ ହୋଇଥାଏ.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍‌ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍‌ -20 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 3କୁ ବିଭାଜିତ କରିଥାଏ. ସମସ୍ତ ପ୍ରାର୍ଥୀଙ୍କୁ ତାଲିକାଭୁକ୍ତ କରନ୍ତୁ \frac{p}{q}.
x=\frac{5}{3}
ସମସ୍ତ ଇଣ୍ଟିଜର୍‌ ମୂଲ୍ୟ ଚେଷ୍ଟା କରି ଏହିଭଳି ଗୋଟିଏ ବର୍ଗ ପାଆନ୍ତୁ, ସବୁଠାରୁ ଛୋଟ ସମ୍ପୂର୍ଣ୍ଣ ମୂଲ୍ୟରୁ ପ୍ରାରମ୍ଭ କରି. ଯଦି କୌଣସି ଇଣ୍ଟିଜର୍‌ ବର୍ଗ ମିଳେନାହିଁ, ଭଗ୍ନାଂଶ ଚେଷ୍ଟା କରନ୍ତୁ.
x^{2}+4=0
ଗୁଣନୀୟକ ଥିଓରମ୍‌ ଦ୍ୱାରା, x-k ହେଉଛି ପ୍ରତିଟି ରୁଟ୍‌ k ପାଇଁ ପଲିନୋମିଆଲର ଏକ ଫ୍ୟାକ୍ଟର ଅଟେ. x^{2}+4 ପ୍ରାପ୍ତ କରିବାକୁ 3x^{3}-5x^{2}+12x-20 କୁ 3\left(x-\frac{5}{3}\right)=3x-5 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ଫଳାଫଳକୁ ଫ୍ୟାକ୍ଟର କରିବାକୁ, ସମୀକରଣକୁ ସମାଧାନ କରନ୍ତୁ ଯେଉଁଠାରେ ଏହା 0 ସହ ସମାନ ହୋଇଥାଏ.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ 0, ଏବଂ c ପାଇଁ 4 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{0±\sqrt{-16}}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x^{2}+4
ପଲିନୋମିଆଲ x^{2}+4 ଫ୍ୟାକ୍ଟର ହୋଇନାହିଁ ଯେହେତୁ ଏଥିରେ କୌଣସି ରେସନାଲ ରୁଟ୍‌ ନାହିଁ.
\left(3x-5\right)\left(x+2\right)\left(x^{2}+4\right)
ପ୍ରାପ୍ତ ରୁଟ୍‌ଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.