ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-31 ab=3\left(-60\right)=-180
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 3x^{2}+ax+bx-60 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -180 ପ୍ରଦାନ କରିଥାଏ.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-36 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -31 ପ୍ରଦାନ କରିଥାଏ.
\left(3x^{2}-36x\right)+\left(5x-60\right)
\left(3x^{2}-36x\right)+\left(5x-60\right) ଭାବରେ 3x^{2}-31x-60 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(x-12\right)+5\left(x-12\right)
ପ୍ରଥମଟିରେ 3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-12\right)\left(3x+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-12 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=12 x=-\frac{5}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-12=0 ଏବଂ 3x+5=0 ସମାଧାନ କରନ୍ତୁ.
3x^{2}-31x-60=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\times 3\left(-60\right)}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ -31, ଏବଂ c ପାଇଁ -60 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-31\right)±\sqrt{961-4\times 3\left(-60\right)}}{2\times 3}
ବର୍ଗ -31.
x=\frac{-\left(-31\right)±\sqrt{961-12\left(-60\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-31\right)±\sqrt{961+720}}{2\times 3}
-12 କୁ -60 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-31\right)±\sqrt{1681}}{2\times 3}
961 କୁ 720 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-31\right)±41}{2\times 3}
1681 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{31±41}{2\times 3}
-31 ର ବିପରୀତ ହେଉଛି 31.
x=\frac{31±41}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{72}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{31±41}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 31 କୁ 41 ସହ ଯୋଡନ୍ତୁ.
x=12
72 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{10}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{31±41}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 31 ରୁ 41 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{5}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-10}{6} ହ୍ରାସ କରନ୍ତୁ.
x=12 x=-\frac{5}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}-31x-60=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
3x^{2}-31x-60-\left(-60\right)=-\left(-60\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 60 ଯୋଡନ୍ତୁ.
3x^{2}-31x=-\left(-60\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -60 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
3x^{2}-31x=60
0 ରୁ -60 ବିୟୋଗ କରନ୍ତୁ.
\frac{3x^{2}-31x}{3}=\frac{60}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{31}{3}x=\frac{60}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{31}{3}x=20
60 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{31}{3}x+\left(-\frac{31}{6}\right)^{2}=20+\left(-\frac{31}{6}\right)^{2}
-\frac{31}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{31}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{31}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{31}{3}x+\frac{961}{36}=20+\frac{961}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{31}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{31}{3}x+\frac{961}{36}=\frac{1681}{36}
20 କୁ \frac{961}{36} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{31}{6}\right)^{2}=\frac{1681}{36}
ଗୁଣନୀୟକ x^{2}-\frac{31}{3}x+\frac{961}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{31}{6}\right)^{2}}=\sqrt{\frac{1681}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{31}{6}=\frac{41}{6} x-\frac{31}{6}=-\frac{41}{6}
ସରଳୀକୃତ କରିବା.
x=12 x=-\frac{5}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{31}{6} ଯୋଡନ୍ତୁ.