ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}+8x-3=65
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
3x^{2}+8x-3-65=65-65
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 65 ବିୟୋଗ କରନ୍ତୁ.
3x^{2}+8x-3-65=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 65 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
3x^{2}+8x-68=0
-3 ରୁ 65 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-8±\sqrt{8^{2}-4\times 3\left(-68\right)}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ 8, ଏବଂ c ପାଇଁ -68 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64-4\times 3\left(-68\right)}}{2\times 3}
ବର୍ଗ 8.
x=\frac{-8±\sqrt{64-12\left(-68\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{64+816}}{2\times 3}
-12 କୁ -68 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-8±\sqrt{880}}{2\times 3}
64 କୁ 816 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-8±4\sqrt{55}}{2\times 3}
880 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-8±4\sqrt{55}}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4\sqrt{55}-8}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±4\sqrt{55}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -8 କୁ 4\sqrt{55} ସହ ଯୋଡନ୍ତୁ.
x=\frac{2\sqrt{55}-4}{3}
-8+4\sqrt{55} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{55}-8}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-8±4\sqrt{55}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -8 ରୁ 4\sqrt{55} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-2\sqrt{55}-4}{3}
-8-4\sqrt{55} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2\sqrt{55}-4}{3} x=\frac{-2\sqrt{55}-4}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}+8x-3=65
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
3x^{2}+8x-3-\left(-3\right)=65-\left(-3\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
3x^{2}+8x=65-\left(-3\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -3 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
3x^{2}+8x=68
65 ରୁ -3 ବିୟୋଗ କରନ୍ତୁ.
\frac{3x^{2}+8x}{3}=\frac{68}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{8}{3}x=\frac{68}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{68}{3}+\left(\frac{4}{3}\right)^{2}
\frac{4}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{8}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{4}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{68}{3}+\frac{16}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{4}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{220}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{16}{9} ସହିତ \frac{68}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{4}{3}\right)^{2}=\frac{220}{9}
ଗୁଣନୀୟକ x^{2}+\frac{8}{3}x+\frac{16}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{220}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{4}{3}=\frac{2\sqrt{55}}{3} x+\frac{4}{3}=-\frac{2\sqrt{55}}{3}
ସରଳୀକୃତ କରିବା.
x=\frac{2\sqrt{55}-4}{3} x=\frac{-2\sqrt{55}-4}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{4}{3} ବିୟୋଗ କରନ୍ତୁ.