ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}+45x-354=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-45±\sqrt{45^{2}-4\times 3\left(-354\right)}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ 45, ଏବଂ c ପାଇଁ -354 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-45±\sqrt{2025-4\times 3\left(-354\right)}}{2\times 3}
ବର୍ଗ 45.
x=\frac{-45±\sqrt{2025-12\left(-354\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-45±\sqrt{2025+4248}}{2\times 3}
-12 କୁ -354 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-45±\sqrt{6273}}{2\times 3}
2025 କୁ 4248 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-45±3\sqrt{697}}{2\times 3}
6273 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-45±3\sqrt{697}}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{3\sqrt{697}-45}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-45±3\sqrt{697}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -45 କୁ 3\sqrt{697} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{697}-15}{2}
-45+3\sqrt{697} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-3\sqrt{697}-45}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-45±3\sqrt{697}}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -45 ରୁ 3\sqrt{697} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{697}-15}{2}
-45-3\sqrt{697} କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{697}-15}{2} x=\frac{-\sqrt{697}-15}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}+45x-354=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
3x^{2}+45x-354-\left(-354\right)=-\left(-354\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 354 ଯୋଡନ୍ତୁ.
3x^{2}+45x=-\left(-354\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -354 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
3x^{2}+45x=354
0 ରୁ -354 ବିୟୋଗ କରନ୍ତୁ.
\frac{3x^{2}+45x}{3}=\frac{354}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{45}{3}x=\frac{354}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+15x=\frac{354}{3}
45 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+15x=118
354 କୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=118+\left(\frac{15}{2}\right)^{2}
\frac{15}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 15 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{15}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+15x+\frac{225}{4}=118+\frac{225}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{15}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+15x+\frac{225}{4}=\frac{697}{4}
118 କୁ \frac{225}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{15}{2}\right)^{2}=\frac{697}{4}
ଗୁଣନୀୟକ x^{2}+15x+\frac{225}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{697}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{15}{2}=\frac{\sqrt{697}}{2} x+\frac{15}{2}=-\frac{\sqrt{697}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{697}-15}{2} x=\frac{-\sqrt{697}-15}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{15}{2} ବିୟୋଗ କରନ୍ତୁ.