x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{1+\sqrt{23}i}{2}\approx 0.5+2.397915762i
x=\frac{-\sqrt{23}i+1}{2}\approx 0.5-2.397915762i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-2x^{2}+2x=12
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
-2x^{2}+2x-12=12-12
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}+2x-12=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 12 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -2, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -12 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4+8\left(-12\right)}}{2\left(-2\right)}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-96}}{2\left(-2\right)}
8 କୁ -12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{-92}}{2\left(-2\right)}
4 କୁ -96 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±2\sqrt{23}i}{2\left(-2\right)}
-92 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-2±2\sqrt{23}i}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2+2\sqrt{23}i}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{23}i}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2i\sqrt{23} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{23}i+1}{2}
-2+2i\sqrt{23} କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{23}i-2}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{23}i}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2i\sqrt{23} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1+\sqrt{23}i}{2}
-2-2i\sqrt{23} କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{23}i+1}{2} x=\frac{1+\sqrt{23}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
-2x^{2}+2x=12
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-2x^{2}+2x}{-2}=\frac{12}{-2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{2}{-2}x=\frac{12}{-2}
-2 ଦ୍ୱାରା ବିଭାଜନ କରିବା -2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-x=\frac{12}{-2}
2 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-x=-6
12 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-x+\frac{1}{4}=-6+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-x+\frac{1}{4}=-\frac{23}{4}
-6 କୁ \frac{1}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{1}{2}\right)^{2}=-\frac{23}{4}
ଗୁଣନୀୟକ x^{2}-x+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{2}=\frac{\sqrt{23}i}{2} x-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{1+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+1}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}