x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{-1+\sqrt{15}i}{4}\approx -0.25+0.968245837i
x=\frac{-\sqrt{15}i-1}{4}\approx -0.25-0.968245837i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x+1-4x^{2}=4x+5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
2x+1-4x^{2}-4x=5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
-2x+1-4x^{2}=5
-2x ପାଇବାକୁ 2x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x+1-4x^{2}-5=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
-2x-4-4x^{2}=0
-4 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
-4x^{2}-2x-4=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -4, b ପାଇଁ -2, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
ବର୍ଗ -2.
x=\frac{-\left(-2\right)±\sqrt{4+16\left(-4\right)}}{2\left(-4\right)}
-4 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{4-64}}{2\left(-4\right)}
16 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-2\right)±\sqrt{-60}}{2\left(-4\right)}
4 କୁ -64 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-2\right)±2\sqrt{15}i}{2\left(-4\right)}
-60 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{2±2\sqrt{15}i}{2\left(-4\right)}
-2 ର ବିପରୀତ ହେଉଛି 2.
x=\frac{2±2\sqrt{15}i}{-8}
2 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2+2\sqrt{15}i}{-8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{15}i}{-8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2i\sqrt{15} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{15}i-1}{4}
2+2i\sqrt{15} କୁ -8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{15}i+2}{-8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{2±2\sqrt{15}i}{-8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2i\sqrt{15} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-1+\sqrt{15}i}{4}
2-2i\sqrt{15} କୁ -8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-\sqrt{15}i-1}{4} x=\frac{-1+\sqrt{15}i}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x+1-4x^{2}=4x+5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
2x+1-4x^{2}-4x=5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
-2x+1-4x^{2}=5
-2x ପାଇବାକୁ 2x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x-4x^{2}=5-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
-2x-4x^{2}=4
4 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
-4x^{2}-2x=4
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-4x^{2}-2x}{-4}=\frac{4}{-4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{2}{-4}\right)x=\frac{4}{-4}
-4 ଦ୍ୱାରା ବିଭାଜନ କରିବା -4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{1}{2}x=\frac{4}{-4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{-4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{1}{2}x=-1
4 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-1+\left(\frac{1}{4}\right)^{2}
\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-1+\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{15}{16}
-1 କୁ \frac{1}{16} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{1}{4}\right)^{2}=-\frac{15}{16}
ଗୁଣନୀୟକ x^{2}+\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{4}=\frac{\sqrt{15}i}{4} x+\frac{1}{4}=-\frac{\sqrt{15}i}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{-1+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i-1}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{4} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}