x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{2}{7}\approx 0.285714286
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
28x-4-49x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 49x^{2} ବିୟୋଗ କରନ୍ତୁ.
-49x^{2}+28x-4=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=28 ab=-49\left(-4\right)=196
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -49x^{2}+ax+bx-4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,196 2,98 4,49 7,28 14,14
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 196 ପ୍ରଦାନ କରିଥାଏ.
1+196=197 2+98=100 4+49=53 7+28=35 14+14=28
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=14 b=14
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 28 ପ୍ରଦାନ କରିଥାଏ.
\left(-49x^{2}+14x\right)+\left(14x-4\right)
\left(-49x^{2}+14x\right)+\left(14x-4\right) ଭାବରେ -49x^{2}+28x-4 ପୁନଃ ଲେଖନ୍ତୁ.
-7x\left(7x-2\right)+2\left(7x-2\right)
ପ୍ରଥମଟିରେ -7x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(7x-2\right)\left(-7x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 7x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{2}{7} x=\frac{2}{7}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 7x-2=0 ଏବଂ -7x+2=0 ସମାଧାନ କରନ୍ତୁ.
28x-4-49x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 49x^{2} ବିୟୋଗ କରନ୍ତୁ.
-49x^{2}+28x-4=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-28±\sqrt{28^{2}-4\left(-49\right)\left(-4\right)}}{2\left(-49\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -49, b ପାଇଁ 28, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-4\left(-49\right)\left(-4\right)}}{2\left(-49\right)}
ବର୍ଗ 28.
x=\frac{-28±\sqrt{784+196\left(-4\right)}}{2\left(-49\right)}
-4 କୁ -49 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-784}}{2\left(-49\right)}
196 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{0}}{2\left(-49\right)}
784 କୁ -784 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{28}{2\left(-49\right)}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=-\frac{28}{-98}
2 କୁ -49 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2}{7}
14 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-28}{-98} ହ୍ରାସ କରନ୍ତୁ.
28x-4-49x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 49x^{2} ବିୟୋଗ କରନ୍ତୁ.
28x-49x^{2}=4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
-49x^{2}+28x=4
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-49x^{2}+28x}{-49}=\frac{4}{-49}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -49 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{28}{-49}x=\frac{4}{-49}
-49 ଦ୍ୱାରା ବିଭାଜନ କରିବା -49 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{4}{7}x=\frac{4}{-49}
7 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{28}{-49} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{4}{7}x=-\frac{4}{49}
4 କୁ -49 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{4}{7}x+\left(-\frac{2}{7}\right)^{2}=-\frac{4}{49}+\left(-\frac{2}{7}\right)^{2}
-\frac{2}{7} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{4}{7} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{2}{7} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{4}{7}x+\frac{4}{49}=\frac{-4+4}{49}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{2}{7} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{4}{7}x+\frac{4}{49}=0
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{4}{49} ସହିତ -\frac{4}{49} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{2}{7}\right)^{2}=0
ଗୁଣନୀୟକ x^{2}-\frac{4}{7}x+\frac{4}{49}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{2}{7}\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{2}{7}=0 x-\frac{2}{7}=0
ସରଳୀକୃତ କରିବା.
x=\frac{2}{7} x=\frac{2}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{2}{7} ଯୋଡନ୍ତୁ.
x=\frac{2}{7}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}