ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

25x^{2}-90x+87=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 25\times 87}}{2\times 25}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 25, b ପାଇଁ -90, ଏବଂ c ପାଇଁ 87 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 25\times 87}}{2\times 25}
ବର୍ଗ -90.
x=\frac{-\left(-90\right)±\sqrt{8100-100\times 87}}{2\times 25}
-4 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-90\right)±\sqrt{8100-8700}}{2\times 25}
-100 କୁ 87 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-90\right)±\sqrt{-600}}{2\times 25}
8100 କୁ -8700 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-90\right)±10\sqrt{6}i}{2\times 25}
-600 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{90±10\sqrt{6}i}{2\times 25}
-90 ର ବିପରୀତ ହେଉଛି 90.
x=\frac{90±10\sqrt{6}i}{50}
2 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{90+10\sqrt{6}i}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{90±10\sqrt{6}i}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 90 କୁ 10i\sqrt{6} ସହ ଯୋଡନ୍ତୁ.
x=\frac{9+\sqrt{6}i}{5}
90+10i\sqrt{6} କୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-10\sqrt{6}i+90}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{90±10\sqrt{6}i}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 90 ରୁ 10i\sqrt{6} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{6}i+9}{5}
90-10i\sqrt{6} କୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{9+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+9}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
25x^{2}-90x+87=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
25x^{2}-90x+87-87=-87
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 87 ବିୟୋଗ କରନ୍ତୁ.
25x^{2}-90x=-87
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 87 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{25x^{2}-90x}{25}=-\frac{87}{25}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 25 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{90}{25}\right)x=-\frac{87}{25}
25 ଦ୍ୱାରା ବିଭାଜନ କରିବା 25 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{18}{5}x=-\frac{87}{25}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-90}{25} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{87}{25}+\left(-\frac{9}{5}\right)^{2}
-\frac{9}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{18}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{9}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{-87+81}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{9}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-\frac{6}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{81}{25} ସହିତ -\frac{87}{25} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{9}{5}\right)^{2}=-\frac{6}{25}
ଗୁଣନୀୟକ x^{2}-\frac{18}{5}x+\frac{81}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{-\frac{6}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{9}{5}=\frac{\sqrt{6}i}{5} x-\frac{9}{5}=-\frac{\sqrt{6}i}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{9+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+9}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{9}{5} ଯୋଡନ୍ତୁ.