ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

25x^{2}+30x=12
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
25x^{2}+30x-12=12-12
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
25x^{2}+30x-12=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 12 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x=\frac{-30±\sqrt{30^{2}-4\times 25\left(-12\right)}}{2\times 25}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 25, b ପାଇଁ 30, ଏବଂ c ପାଇଁ -12 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-30±\sqrt{900-4\times 25\left(-12\right)}}{2\times 25}
ବର୍ଗ 30.
x=\frac{-30±\sqrt{900-100\left(-12\right)}}{2\times 25}
-4 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-30±\sqrt{900+1200}}{2\times 25}
-100 କୁ -12 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-30±\sqrt{2100}}{2\times 25}
900 କୁ 1200 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-30±10\sqrt{21}}{2\times 25}
2100 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-30±10\sqrt{21}}{50}
2 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{10\sqrt{21}-30}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-30±10\sqrt{21}}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -30 କୁ 10\sqrt{21} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{21}-3}{5}
-30+10\sqrt{21} କୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-10\sqrt{21}-30}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-30±10\sqrt{21}}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -30 ରୁ 10\sqrt{21} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{21}-3}{5}
-30-10\sqrt{21} କୁ 50 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
25x^{2}+30x=12
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{25x^{2}+30x}{25}=\frac{12}{25}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 25 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{30}{25}x=\frac{12}{25}
25 ଦ୍ୱାରା ବିଭାଜନ କରିବା 25 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{6}{5}x=\frac{12}{25}
5 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{30}{25} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{12}{25}+\left(\frac{3}{5}\right)^{2}
\frac{3}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{6}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{12+9}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{21}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{25} ସହିତ \frac{12}{25} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{3}{5}\right)^{2}=\frac{21}{25}
ଗୁଣନୀୟକ x^{2}+\frac{6}{5}x+\frac{9}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{21}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{5}=\frac{\sqrt{21}}{5} x+\frac{3}{5}=-\frac{\sqrt{21}}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{5} ବିୟୋଗ କରନ୍ତୁ.